Tungsten–Iron–Ruthenium Ternary Alloy Immobilized into the Inner Nickel Foam for High-Current-Density Water Oxidation
Xiyue Fan
NEST Lab, Department of Chemistry, College of Sciences, Department of Chemistry, Shanghai University, Shanghai, 200444 P. R. China
i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 P. R. China
Search for more papers by this authorChunyu Zhang
i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 P. R. China
Search for more papers by this authorCorresponding Author
Zhigang Chen
School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorTong Liu
i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 P. R. China
Search for more papers by this authorGuang Yang
i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 P. R. China
Search for more papers by this authorShuang Hou
i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 P. R. China
Search for more papers by this authorChengfeng Zhu
i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 P. R. China
Search for more papers by this authorJinxun Liu
Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Jiaqiang Xu
NEST Lab, Department of Chemistry, College of Sciences, Department of Chemistry, Shanghai University, Shanghai, 200444 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorFen Qiao
School of Energy & Power Engineering, Jiangsu University, Zhenjiang, 212013 P. R. China
Search for more papers by this authorCorresponding Author
Yi Cui
i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXiyue Fan
NEST Lab, Department of Chemistry, College of Sciences, Department of Chemistry, Shanghai University, Shanghai, 200444 P. R. China
i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 P. R. China
Search for more papers by this authorChunyu Zhang
i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 P. R. China
Search for more papers by this authorCorresponding Author
Zhigang Chen
School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorTong Liu
i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 P. R. China
Search for more papers by this authorGuang Yang
i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 P. R. China
Search for more papers by this authorShuang Hou
i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 P. R. China
Search for more papers by this authorChengfeng Zhu
i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 P. R. China
Search for more papers by this authorJinxun Liu
Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Jiaqiang Xu
NEST Lab, Department of Chemistry, College of Sciences, Department of Chemistry, Shanghai University, Shanghai, 200444 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorFen Qiao
School of Energy & Power Engineering, Jiangsu University, Zhenjiang, 212013 P. R. China
Search for more papers by this authorCorresponding Author
Yi Cui
i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The pursuit of highly-active and stable catalysts in anodic oxygen evolution reaction (OER) is desirable for high-current-density water electrolysis toward industrial hydrogen production. Herein, a straightforward yet feasible method to prepare WFeRu ternary alloying catalyst on nickel foam is demonstrated, whereby the foreign W, Fe, and Ru metal atoms diffuse into the Ni foam resulting in the formation of inner immobilized ternary alloy. Thanks to the synergistic impact of foreign metal atoms and structural robustness of inner immobilized alloying catalyst, the well-designed WFeRu@NF self-standing anode exhibits superior OER activities. It only requires overpotentials of 245 and 346 mV to attain current densities of 20 and 500 mA cm−2, respectively. Moreover, the as-prepared ternary alloying catalyst also exhibits a long-term stability at a high-current-density of 500 mA cm−2 for over 45 h, evidencing the inner-immobilization strategy is promising for the development of highly active and stable metal-based catalysts for high-density-current water oxidation process.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202310829-sup-0001-SuppMat.pdf2.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Y. Yu, Y. Duan, X. Y. Feng, X. X. Yu, M. R. Gao, S. H. Yu, Adv. Mater. 2021, 33, 2007100.
- 2W. M. Tong, M. Forster, F. Dionigi, S. Dresp, R. S. Erami, P. Strasser, A. J. Cowan, P. Farràs, Nat. Energy 2020, 5, 367.
- 3T. Reier, H. N. Nong, D. Teschner, R. Schlögl, P. Strasser, Adv. Energy Mater. 2017, 7, 1601275.
- 4J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383.
- 5J. Ying, J. B. Chen, Y. X. Xiao, S. I. C. de Torresi, K. I. Ozoemena, X. Y. Yang, J. Mater. Chem. A 2023, 11, 1634.
- 6C. C. L. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2015, 137, 4347.
- 7G. Wu, X. Han, J. Y. Cai, P. Q. Yin, P. X. Cui, X. S. Zheng, H. Li, C. Chen, G. M. Wang, X. Hong, Nat. Commun. 2022, 13, 4200.
- 8F. Yu, H. Q. Zhou, Y. F. Huang, J. Y. Sun, F. Qin, J. M. Bao, W. A. Goddardiii, S. Chen, Z. F. Ren, Nat. Commun. 2018, 9, 2551.
- 9H. Y. Yang, M. Driess, P. W. Menezes, Adv. Energy Mater. 2021, 11, 2102074.
- 10T. Y. Ma, S. Dai, S. Z. Qiao, Mater. Today 2015, 19, 5.
- 11J. Jiang, Y. Y. Li, J. P. Liu, X. T. Huang, C. Z. Yuan, X. W. Lou, Adv. Mater. 2012, 24, 5166.
- 12Y. Liu, X. H. Liu, A. R. Jadhav, T. Yang, Y. Hwang, H. D. Wang, L. L. Wang, Y. G. Luo, A. Kumar, J. S. Lee, H. T. D. Bui, M. G. Kim, H. Lee, Angew. Chem., Int. Ed. 2022, 61, e202114160.
- 13Y. Kuang, M. J. Kenney, Y. T. Meng, W. H. Hung, Y. J. Liu, J. E. Huang, R. Prasanna, P. S. Li, Y. P. Li, L. Wang, M. C. Lin, M. D. McGehee, X. M. Sun, H. J. Dai, Proc. Natl. Acad. Sci. USA 2019, 116, 6624.
- 14S. P. Zeng, H. Shi, T. Y. Dai, Y. Liu, Z. Wen, G. F. Han, T. H. Wang, W. Zhang, X. Y. Lang, W. T. Zheng, Q. Jiang, Nat. Commun. 2023, 14, 1811.
- 15X. Liu, R. T. Guo, K. Ni, F. J. Xia, C. J. Niu, B. Wen, J. S. Meng, P. J. Wu, J. S. Wu, X. J. Wu, L. Q. Mai, Adv. Mater. 2020, 32, 2001136.
- 16Y. P. Liu, X. Liang, L. Gu, Y. Zhang, G. D. Li, X. X. Zou, J. S. Chen, Nat. Commun. 2018, 9, 2609.
- 17X. Zou, Y. P. Liu, G. D. Li, Y. Y. Wu, D. P. Liu, W. Li, H. W. Li, D. J. Wang, Y. Zhang, X. X. Zou, Adv. Mater. 2017, 29, 1700404.
- 18G. Meng, W. M. Sun, A. A. Mon, X. Wu, L. Y. Xia, A. J. Han, Y. Wang, Z. B. Zhang, J. F. Liu, D. S. Wang, Y. D. Li, Adv. Mater. 2019, 31, 1903616.
- 19M. C. Luo, Y. J. Sun, X. Zhang, Y. N. Qin, M. Q. Li, Y. J. Li, C. Li, C. Li, Y. Yang, L. Wang, P. Gao, G. Lu, S. J. Guo, Adv. Mater. 2018, 30, 1705515.
- 20M. C. Luo, S. J. Guo, Nat. Rev. Mater. 2017, 2, 17059.
- 21L. Wang, Z. H. Zeng, W. P. Gao, T. Maxson, D. Raciti, M. Giroux, X. Q. Pan, C. Wang, J. Greeley, Science 2019, 363, 870.
- 22H. Y. Liu, L. Y. Zhang, N. Wang, D. S. Su, Angew. Chem., Int. Ed. 2014, 53, 12634.
- 23E. Castillejos, P. J. Debouttière, L. Roiban, A. Solhy, V. Martinez, Y. Kihn, O. Ersen, K. Philippot, B. Chaudret, P. Serp, Angew. Chem., Int. Ed. 2009, 48, 2529.
- 24W. B. Pei, Y. X. Liu, J. G. Deng, K. F. Zhang, Z. Q. Hou, X. T. Zhao, H. X. Dai, Appl. Catal. B: Environ. 2019, 256, 117814.
- 25J. Zeng, M. Hu, W. D. Wang, H. Q. Chen, Y. X. Qin, Sens. Actuator B: Chem. 2012, 161, 447.
- 26S. Li, B. B. Chen, Y. Wang, M. Y. Ye, P. A. van Aken, C. Cheng, A. Thomas, Nat. Mater. 2021, 20, 1240.
- 27H. Nitta, K. Miura, Y. lijima, Acta Mater. 2006, 54, 2833.
- 28G. G. Liu, P. Li, G. X. Zhao, X. Wang, J. T. Kong, H. M. Liu, H. B. Zhang, K. Chang, X. G. Meng, T. Kako, J. Am. Chem. Soc. 2016, 138, 9128.
- 29P. S. Li, M. Y. Wang, X. X. Duan, L. R. Zheng, X. P. Cheng, Y. F. Zhang, Y. Kuang, Y. P. Li, Q. Ma, Z. X. Feng, W. L., X. M. Sun, Nat. Commun. 2019, 10, 1711.
- 30Y. K. Zhang, C. Q. Wu, H. L. Jiang, Y. X. Lin, H. J. Liu, Q. He, S. M. Chen, T. Duan, L. Song, Adv. Mater. 2018, 30, 1707522.
- 31Y. C. Pi, Q. Shao, P. T. Wang, F. Lv, S. J. Guo, J. Guo, X. Q. Huang, Angew. Chem., Int. Ed. 2017, 56, 4502.
- 32Q. J. Mo, W. B. Zhang, L. Q. He, X. Yu, Q. S. Gao, Appl. Catal. B 2019, 244, 620.
- 33B. Sarac, T. Karazehir, M. Mühlbacher, A. S. Sarac, J. Eckert, Electrocatal 2020, 11, 94.
- 34J. Q. Yan, L. Q. Kong, Y. J. Ji, J. White, Y. Y. Li, J. Zhang, P. F. An, S. Z. Liu, S. T. Lee, T. Y. Ma, Nat. Commun. 2019, 10, 2149.
- 35S. Selvakumar, N. Nuns, M. Trentesaux, V. S. Batra, J. M. Giraudon, Appl. Catal. B: Environ. 2018, 223, 200.
10.1016/j.apcatb.2017.05.029 Google Scholar
- 36Y. Duan, Z. Y. Yu, L. Yang, L. R. Zheng, C. T. Zhang, X. T. Yang, F. Y. Gao, X. L. Zhang, X. X. Yu, R. Liu, H. H. Ding, C. Gu, X. S. Zheng, L. Shi, J. Jiang, J. F. Zhu, M. R. Gao, S. H. Yu, Nat. Commun. 2020, 11, 4789.
- 37C. X. Liu, Y. B. Jiang, T. Wang, Q. S. Li, Y. Z. Liu, Adv. Sci. 2023, 10, 2207.
- 38H. Liu, Z. Zhang, M. X. Li, Z. L. Wang, X. H. Zhang, T. S. Li, Y. P. Li, S. B. Tian, Y. Kuang, X. M. Sun, Small 2022, 18, 2202513.
- 39Z. Y. Chen, Y. Song, J. Y. Cai, X. S. Zheng, D. D. Han, Y. S. Wu, Y. P. Zang, S. W. Niu, Y. Liu, J. F. Zhu, X. J. Liu, G. M. Wang, Angew. Chem., Int. Ed. 2018, 57, 5076.