Polysulfide Anions [Sx]2− (x = 2, 3, 4, 5): Promising Functional Building Units for Infrared Nonlinear Optical Materials
Miao Song
College of Chemistry and Materials Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002 China
Search for more papers by this authorYan Xiao
College of Chemistry and Materials Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002 China
Search for more papers by this authorDaqing Yang
College of Chemistry and Materials Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002 China
Search for more papers by this authorYing Wang
College of Chemistry and Materials Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002 China
Search for more papers by this authorCorresponding Author
Bingbing Zhang
College of Chemistry and Materials Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002 China
E-mail: [email protected]
Search for more papers by this authorMiao Song
College of Chemistry and Materials Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002 China
Search for more papers by this authorYan Xiao
College of Chemistry and Materials Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002 China
Search for more papers by this authorDaqing Yang
College of Chemistry and Materials Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002 China
Search for more papers by this authorYing Wang
College of Chemistry and Materials Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002 China
Search for more papers by this authorCorresponding Author
Bingbing Zhang
College of Chemistry and Materials Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Infrared nonlinear optical (IR NLO) materials play significant roles in laser technology. The novel functional building units (FBUs) are of great importance in constructing NLO materials with strong second harmonic generation (SHG). Herein, polysulfide anion [Sx]2− (x = 2, 3, 4, 5) units are investigated on NLO-related properties and structure-performance relationships. Theoretical calculations uncover that the [Sx]2− (x = 2, 3, 4, 5) units are potential IR NLO FBUs with large polarizability anisotropy (δ), hyperpolarizability (β) and wide HOMO–LUMO gap. Fourteen crystals including [Sx]2− (x = 2, 3, 4, 5) units are calculated and analyzed. The results show that these units can result in a wide IR transmittance range, significant SHG effects, wide band gap Eg (Na2S4: Eg = 3.09 eV), and large birefringence Δn [BaS3 (P21212): Δn = 0.70]. More importantly, it is highlighted that the crystal materials including with [Sx]2− (x = 2, 3, 4, 5) groups are good candidates for the exploration of the outstanding IR NLO materials.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202310423-sup-0001-SuppMat.pdf973 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Chu, P. Wang, H. Zeng, S. Cheng, X. Su, Z. Yang, J. Li, S. Pan, Chem. Mater. 2021, 33, 6514.
- 2J. Li, F. L. Deepak, Chem. Rev. 2022, 122, 16911.
- 3M. Mutailipu, J. Han, Z. Li, F. Li, J. Li, F. Zhang, X. Long, Z. Yang, S. Pan, Nat Photonics 2023, 17, 694.
- 4M.-Y. Ran, Z. Ma, H. Chen, B. Li, X.-T. Wu, H. Lin, Q.-L. Zhu, Chem. Mater. 2020, 32, 5890.
- 5G. Shi, Y. Wang, F. Zhang, B. Zhang, Z. Yang, X. Hou, S. Pan, K. R. Poeppelmeier, J. Am. Chem. Soc. 2017, 139, 10645.
- 6B. Zhang, G. Shi, Z. Yang, F. Zhang, S. Pan, Angew. Chem., Int. Ed. 2017, 56, 3916.
- 7J. Zhang, R. Wei, D. Yang, Y. Wang, B. Zhang, Inorg. Chem. Front. 2023, 10, 4711.
- 8X. Zhao, C. Lin, S. Yang, H. Tian, C. Wang, T. Yan, J. Zhang, B. Li, N. Ye, M. Luo, Inorg. Chem. Front. 2023, 10, 1119.
- 9J. Zhou, L. Wang, Y. Chu, H. Wang, S. Pan, J. Li, Adv. Opt. Mater. 2023, https://doi.org/10.1002/smll.202306577.
10.1002/smll.202306577 Google Scholar
- 10S. C. Abrahams, J. L. Bernstein, J. Chem. Phys. 1973, 59, 1625.
- 11A. Abudurusuli, J. Huang, P. Wang, Z. Yang, S. Pan, J. Li, Angew. Chem., Int. Ed. 2021, 60, 24131.
- 12G. D. Boyd, E. Buehler, F. G. Storz, Appl. Phys. Lett. 1971, 18, 301.
- 13I. Chung, M. G. Kanatzidis, Chem. Mater. 2013, 26, 849.
- 14J. Feng, C.-L. Hu, B. Li, J.-G. Mao, Chem. Mater. 2018, 30, 3901.
- 15A. S. Verma, D. Sharma, Phys. Scr. 2007, 76, 22.
- 16Y.-Y. Li, P.-F. Liu, L.-M. Wu, Chem. Mater. 2017, 29, 5259.
- 17P. Yang, H. Wu, Z. Hu, J. Wang, Y. Wu, H. Yu, Mater Today Chem 2023, 33, 101727.
- 18Y. X. Han, C. L. Hu, J. G. Mao, Small 2023, https://doi.org/10.1002/smll.202305828.
10.1002/smll.202305828 Google Scholar
- 19M. M. Chen, S. H. Zhou, W. B. Wei, X. T. Wu, H. Lin, Q. L. Zhu, Adv. Opt. Mater. 2022, 10, 2102123.
- 20J. Xu, K. Wu, B. Zhang, H. Yu, H. Zhang, Inorg. Chem. Front. 2023, 10, 2045.
- 21D. Mei, W. Cao, N. Wang, X. Jiang, J. Zhao, W. Wang, J. Dang, S. Zhang, Y. Wu, P. Rao, Z. Lin, Mater. Horiz. 2021, 8, 2330.
- 22X. Tian, Y. Xiao, B. Zhang, D. Yang, K. Wu, Mater. Today Phys. 2022, 28, 100885.
- 23J. Zhou, Z. Fan, K. Zhang, Z. Yang, S. Pan, J. Li, Mater. Horiz. 2023, 10, 619.
- 24Y.-X. Han, C.-L. Hu, B.-X. Li, J.-G. Mao, Mater. Today Phys. 2023, 31, 100987.
- 25M. Luo, C. Huang, F. Lin, X. Che, X. Zhang, F. Huang, Inorg. Chem. 2022, 61, 657.
- 26Y.-F. Shi, Z. Ma, B.-X. Li, X.-T. Wu, H. Lin, Q.-L. Zhu, Mater. Chem. Front. 2022, 6, 3054.
- 27H. Liu, Z. Song, H. Wu, Z. Hu, J. Wang, Y. Wu, H. Yu, ACS Mater. Lett. 2022, 4, 1593.
- 28H.-D. Yang, S.-H. Zhou, M.-Y. Ran, X.-T. Wu, H. Lin, Q.-L. Zhu, Inorg. Chem. Front. 2023, 10, 2030.
- 29S. Cui, H. Wu, Z. Hu, J. Wang, Y. Wu, H. Yu, Adv. Sci. 2022, 10, 2204755.
10.1002/advs.202204755 Google Scholar
- 30J. Xu, K. Wu, Y. Xiao, B. Zhang, H. Yu, H. Zhang, ACS Appl Mater Interfaces 2022, 14, 37967.
- 31Y. Song, Z. Qian, B. Zhou, H. Yu, Z. Hu, J. Wang, Y. Wu, H. Wu, Chem. Commun. 2023, 59, 3309.
- 32C. Zhao, K. Wu, Y. Xiao, B. Zhang, H. Yu, H. Zhang, J. Mater. Chem. C 2023, 11, 4439.
- 33S. M. Pei, B. W. Liu, W. F. Chen, X. M. Jiang, G. C. Guo, Mater. Horiz. 2023, 10, 2921.
- 34X. Y. Li, Q. Wei, C. L. Hu, J. Pan, B. X. Li, Z. Z. Xue, X. Y. Li, J. H. Li, J. G. Mao, G. M. Wang, Adv. Funct. Mater. 2022, 33, 2210718.
- 35W. Tan, C. Zhang, T. Huang, B. Zhang, Chinese J. Struc. Chem. 2023, 42, 100098.
10.1016/j.cjsc.2023.100098 Google Scholar
- 36G. Li, Z. Yang, X. Hou, S. Pan, Angew. Chem., Int. Ed. 2023, 62, 202303711.
- 37W. Xie, F. Li, J. Chen, Z. Yang, G. Li, S. Pan, Angew. Chem., Int. Ed. 2023, 62, 202307895.
- 38K. Ding, H. Wu, Z. Hu, J. Wang, Y. Wu, H. Yu, Small 2023, 19, 2302819.
- 39M. Y. Ran, S. H. Zhou, W. B. Wei, B. X. Li, X. T. Wu, H. Lin, Q. L. Zhu, Small 2023, https://doi.org/10.1002/smll.202304563.
10.1002/smll.202304563 Google Scholar
- 40Y. S. Liu, W. B. Jones, J. P. Chernoch, Appl. Phys. Lett. 1976, 29, 32.
- 41L. Kang, M. Zhou, J. Yao, Z. Lin, Y. Wu, C. Chen, J. Am. Chem. Soc. 2015, 137, 13049.
- 42L. Kang, D. M. Ramo, Z. Lin, P. D. Bristowe, J. Qin, C. Chen, J Mater Chem C. 2013, 1, 7363.
- 43H. Li, G. Li, K. Wu, B. Zhang, Z. Yang, S. Pan, Chem. Mater. 2018, 30, 7428.
- 44J. Heyd, G. E. Scuseria, J Phys Chem B 2004, 121, 1187.
- 45J. S. Lin, A. Qteish, M. C. Payne, V. Heine, Phys Rev B 1993, 47, 4174.
- 46A. M. Rappe, K. M. Rabe, E. Kaxiras, J. D. Joannopoulos, Phys Rev B 1990, 41, 1227.
- 47S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. 2005, 220, 567.
- 48K. B. John, P. Perdew, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 49M. Yu, X. Xiao, Z. Xiong, J. Li, X. Liu, W. Huang, B. Chen, Z. He, Mater. Today Commun. 2022, 31, 103276.
- 50C. Aversa, J. E. Sipe, Phys Rev B 1995, 52, 14636.
- 51J. Lin, M. H. Lee, Z. P. Liu, C. Chen, C. J. Pickard, Phys Rev B 1999, 60, 13380.
- 52B. Zhang, M.-H. Lee, Z. Yang, Q. Jing, S. Pan, M. Zhang, H. Wu, X. Su, C.-S. Li, Appl. Phys. Lett. 2015, 106, 01906.
- 53M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09 Revision A.1. Gaussian Inc, 2009.
- 54S. Maintz, V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, J. Comput. Chem. 2016, 37, 1030.
- 55R. Nelson, C. Ertural, J. George, V. L. Deringer, G. Hautier, R. Dronskowski, J. Comput. Chem. 2020, 41, 1931.
- 56G. Kresse, J. Furthumller, Comp. Mater. Sci. 1996, 6, 15.