Novel Heterostructure-Based CoFe and Cobalt Oxysulfide Nanocubes for Effective Bifunctional Electrocatalytic Water and Urea Oxidation
Athibala Mariappan
School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541 South Korea
Search for more papers by this authorPandian Mannu
Department of Physics, Tamkang University, New Taipei City, 25137 Taiwan
Search for more papers by this authorKugalur Shanmugam Ranjith
Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100–715 Republic of Korea
Search for more papers by this authorTa Thi Thuy Nga
Department of Physics, Tamkang University, New Taipei City, 25137 Taiwan
Search for more papers by this authorYoung-Kyu Han
Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100–715 Republic of Korea
Search for more papers by this authorCorresponding Author
Chung-Li Dong
Department of Physics, Tamkang University, New Taipei City, 25137 Taiwan
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ranjith Kumar Dharman
School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541 South Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Tae Hwan Oh
School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541 South Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAthibala Mariappan
School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541 South Korea
Search for more papers by this authorPandian Mannu
Department of Physics, Tamkang University, New Taipei City, 25137 Taiwan
Search for more papers by this authorKugalur Shanmugam Ranjith
Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100–715 Republic of Korea
Search for more papers by this authorTa Thi Thuy Nga
Department of Physics, Tamkang University, New Taipei City, 25137 Taiwan
Search for more papers by this authorYoung-Kyu Han
Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100–715 Republic of Korea
Search for more papers by this authorCorresponding Author
Chung-Li Dong
Department of Physics, Tamkang University, New Taipei City, 25137 Taiwan
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ranjith Kumar Dharman
School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541 South Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Tae Hwan Oh
School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541 South Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The development of effective oxygen evolution reaction (OER) and urea oxidation reaction (UOR) on heterostructure electrocatalysts with specific interfaces and characteristics provides a distinctive character. In this study, heterostructure nanocubes (NCs) comprising inner cobalt oxysulfide (CoOS) NCs and outer CoFe (CF) layered double hydroxide (LDH) are developed using a hydrothermal methodology. During the sulfidation process, the divalent sulfur ions (S2−) are released from the breakdown of the sulfur source and react with the Co-precursors on the surface leading to the transformation of CoOH nanorods into CoOS nanocubes. Further, X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) analyses reveal that the interactions at the interface of the CF@CoOS NCs significantly altered the electronic structure, thus enhancing the electrocatalytic performance. The optimal catalysts exhibited effective OER and UOR activities, the attained potentials are 1.51 and 1.36 V. This remarkable performance is attributable to the induction of electron transfer from the CoFe LDH to CoOS, which reduces the energy barrier of the intermediates for the OER and UOR. Furthermore, an alkaline water and urea two-cell electrolyzer assembled using CF@CoOS-2 NCs and Pt/C as the anode and cathode requires a cell voltage of 1.63 and 1.56 V along with a durability performance.
Conflict of Interest
The authors declare no conflict interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202310112-sup-0001-SuppMat.pdf760.9 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Zhang, R. Zou, Small 2021, 17, 2100129.
- 2R. Gao, J. Zhu, D. Yan, Nanoscale 2021, 13, 13593.
- 3Q. Fu, J. Han, X. Wang, P. Xu, T. Yao, J. Zhong, W. Zhong, S. Liu, T. Gao, Z. Zhang, L. Xu, B. Song, Adv. Mater. 2021, 33, 1907818.
- 4P. Prabhu, V. Jose, J.-M. Lee, Matter 2020, 2, 526.
- 5D. Guan, B. Wang, J. Zhang, R. Shi, K. Jiao, L. Li, Y. Wang, B. Xie, Q. Zhang, J. Yu, Energy Environ. Sci. 2023, 16, 4926.
- 6T. Tang, S. Li, J. Sun, Z. Wang, J. Guan, Nano Res. 2022, 15, 8714.
- 7P. Li, Y. Lin, Z. Qi, D. Yan, J. Mater. Chem. A 2023, 11, 21078.
- 8P. Li, Y. Liu, M. A. Mushtaq, D. Yan, Inorganic Chemistry Frontiers 2023, 10, 4650.
- 9G. A. Gebreslase, M. V. Martínez-Huerta, M. J. Lázaro, J. Energy Chem. 2022, 67, 101.
- 10Z. Guo, W. Ye, X. Fang, J. Wan, Y. Ye, Y. Dong, D. Cao, D. Yan, Inorg. Chem. Front. 2019, 6, 687.
- 11N. Yuan, Q. Jiang, J. Li, J. Tang, Arabian J. Chem. 2020, 13, 4294.
- 12M. Liu, H. Zhao, X. Du, X. Zhang, Int. J. Hydrogen Energy 2023, 48, 38143.
- 13W. Ge, L. Lin, S.-Q. Wang, Y. Wang, X. Ma, Q. An, L. Zhao, J. Mater. Chem. A 2023, 11, 15100.
- 14Y. Guo, X. Yang, X. Liu, X. Tong, N. Yang, Adv. Funct. Mater. 2023, 33, 2209134.
- 15Z. Yang, H. Niu, L. Xia, L. Li, M. Xiang, C. Yu, Z. Zhang, S. Dong, Int. J. Hydrogen Energy 2023, 48, 32304.
- 16P. Li, T. Zhang, M. A. Mushtaq, S. Wu, X. Xiang, D. Yan, Chem. Rec. 2021, 21, 841.
- 17X. Ren, Y. Tong, Int. J. Hydrogen Energy 2023, 49, 489.
- 18M. You, S. Yi, G. Zhang, W. Long, D. Chen, J. Colloid Interface Sci. 2023, 648, 278.
- 19Z. Wu, J. Yang, W. Shao, M. Cheng, X. Luo, M. Zhou, S. Li, T. Ma, C. Cheng, C. Zhao, Advanced Fiber Materials 2022, 4, 774.
- 20D. Liu, H. Ai, J. Li, M. Fang, M. Chen, D. Liu, X. Du, P. Zhou, F. Li, K. H. Lo, Y. Tang, S. Chen, L. Wang, G. Xing, H. Pan, Adv. Energy Mater. 2020, 10, 2002464.
- 21Y. Du, X. Ding, M. Han, M. Zhu, Chem. Cat. Chem. 2020, 12, 4339.
- 22T. Zhang, F. Song, Y. Wang, J. Yuan, L. Niu, A.-J. Wang, K. Fang, Electrochim. Acta 2022, 404, 139648.
- 23R. K. Dharman, B. Mary Francis, J. S. Ponraj, S. C. Dhanabalan, R. K. Manavalan, T. H. Oh, J. Electroanal. Chem. 2022, 925, 116905.
- 24X. Chen, S. Lin, H. Zhang, Renewable Energy 2022, 189, 509.
- 25W.-J. Niu, J.-Z. He, Y.-P. Wang, Q.-Q. Sun, W.-W. Liu, L.-Y. Zhang, M.-C. Liu, M.-J. Liu, Y.-L. Chueh, Nanoscale 2020, 12, 19644.
- 26X. Ren, J. Zhou, X. Qi, Y. Liu, Z. Huang, Z. Li, Y. Ge, S. C. Dhanabalan, J. S. Ponraj, S. Wang, J. Zhong, H. Zhang, Adv. Energy Mater. 2017, 7, 1700396.
- 27X. Ye, J. Fan, Y. Min, P. Shi, Q. Xu, Nanoscale 2021, 13, 14854.
- 28L. Meng, H. Xuan, J. Wang, X. Liang, Y. Li, J. Yang, P. Han, J. Alloys Compd. 2022, 919, 165877.
- 29A. Mariappan, R. K. Dharman, T. H. Oh, S. Prabu, K.-Y. Chiang, Mater. Chem. Phys. 2023, 309, 128321.
- 30M. Salmanion, I. Kondov, M. Vandichel, P. Aleshkevych, M. M. Najafpour, Inorg. Chem. 2022, 61, 2292.
- 31K. Hu, Q. Guo, J. Zhou, L. Qi, R. Dai, X. Xiong, Z. Zou, K. Huang, Colloids Surf. A 2022, 647, 129041.
- 32N. Li, J. Han, K. Yao, M. Han, Z. Wang, Y. Liu, L. Liu, H. Liang, J. Mater. Sci. Technol. 2022, 106, 90.
- 33A. P. Tiwari, K. Kim, S. Jeon, Curr. Opin. Electrochem. 2022, 100982.
10.1016/j.coelec.2022.100982 Google Scholar
- 34W. Ye, Y. Yang, M. Arif, S. Yang, X. Fang, M. A. Mushtaq, X. Chen, D. Yan, ACS Sustainable Chem. Eng. 2020, 8, 15946.
- 35S. Chakrabartty, S. Karmakar, C. R. Raj, ACS Appl. Nano Mater. 2020, 3, 11326.
- 36H. Liu, C.-Y. Xu, Y. Du, F.-X. Ma, Y. Li, J. Yu, L. Zhen, Sci. Rep. 2019, 9, 1951.
- 37H. Xu, K. Ye, K. Zhu, J. Yin, J. Yan, G. Wang, D. Cao, Inorg. Chem. Front. 2020, 7, 2602.
- 38F. Si, C. Tang, Q. Gao, F. Peng, S. Zhang, Y. Fang, S. Yang, J. Mater. Chem. A 2020, 8, 3083.
- 39Y. Lu, C. Liu, Y. Xing, Q. Xu, A. M. S. Hossain, D. Jiang, D. Li, J. Zhu, J. Colloid Interface Sci. 2021, 604, 680.
- 40Y. Zhao, H. Lin, M. Chen, D. Yan, Ind. Eng. Chem. Res. 2014, 53, 3140.
- 41D. Yan, J. Lu, L. Chen, S. Qin, J. Ma, M. Wei, D. G. Evans, X. Duan, Chem. Commun. 2010, 46, 5912.
- 42L. Yu, H. Zhou, J. Sun, F. Qin, D. Luo, L. Xie, F. Yu, J. Bao, Y. Li, Y. Yu, S. Chen, Z. Ren, Nano Energy 2017, 41, 327.
- 43C. Zhang, X. Du, X. Zhang, Y. Wang, T. Hu, Dalton Trans. 2023, 52, 6052.
- 44H. Ma, R. Gao, D. Yan, J. Zhao, M. Wei, J. Mater. Chem. C 2013, 1, 4128.
- 45Z. Wang, W. Liu, Y. Hu, M. Guan, L. Xu, H. Li, J. Bao, H. Li, Appl. Catal., B 2020, 272, 118959.
- 46S. Cheng, T. Shi, C. Chen, Y. Zhong, Y. Huang, X. Tao, J. Li, G. Liao, Z. Tang, Sci. Rep. 2017, 7, 6681.
- 47J. Li, G. Li, J. Wang, C. Xue, X. Li, S. Wang, B. Han, M. Yang, L. Li, Inorg. Chem. Front. 2020, 7, 191.
- 48A. Ramesh, A. Ajith, N. S. Gudipati, S. R. K. Vanjari, S. A. John, V. Biju, C. Subrahmanyam, Biosensors 2023, 13, 108.
- 49A. N. Grace, R. Ramachandran, M. Vinoba, S. Y. Choi, D. H. Chu, Y. Yoon, S. C. Nam, S. K. Jeong, Electroanalysis 2014, 26, 199.
- 50W. Li, Y. Li, C. Yang, Q. Ma, K. Tao, L. Han, Dalton Trans. 2020, 49, 14017.
- 51J. Ning, T. Zhang, Y. He, C. Jia, P. Saha, Q. Cheng, Materials 2017, 10, 608.
- 52M. Cheng, H. Fan, Y. Song, Y. Cui, R. Wang, Dalton Trans. 2017, 46, 9201.
- 53H. Yao, S. Wang, Y. Cao, R. Chen, Z. Lu, J. Hu, J. Xie, A. Hao, J. Alloys Compd. 2022, 926, 166846.
- 54Y. Xu, B. Chen, J. Nie, G. Ma, Nanoscale 2018, 10, 17021.
- 55A. Rajan, M. Sharma, N. K. Sahu, Sci. Rep. 2020, 10, 15045.
- 56T. Yamashita, P. Hayes, Appl. Surf. Sci. 2008, 254, 2441.
- 57X. Lu, H. Wang, X. Liu, Z. Song, N. Jiang, F. Xie, Q. Zheng, D. Lin, J. Alloys Compd. 2020, 838, 155618.
- 58K.-L. Chiu, L.-Y. Lin, J. Mater. Chem. A 2019, 7, 4626.
- 59P. V. Sarma, T. V. Vineesh, R. Kumar, V. Sreepal, R. Prasannachandran, A. K. Singh, M. M. Shaijumon, ACS Catal. 2020, 10, 6753.
- 60D. Liu, C. Zhang, Y. Yu, Y. Shi, Y. Yu, Z. Niu, B. Zhang, Nano Res. 2018, 11, 603.
- 61Y.-P. Deng, Y. Jiang, R. Liang, S.-J. Zhang, D. Luo, Y. Hu, X. Wang, J.-T. Li, A. Yu, Z. Chen, Nat. Commun. 2020, 11, 1952.
- 62C. Gao, S. Chen, Y. Wang, J. Wang, X. Zheng, J. Zhu, L. Song, W. Zhang, Y. Xiong, Adv. Mater. 2018, 30, 1704624.
- 63D. Guan, H. Xu, Q. Zhang, Y.-C. Huang, C. Shi, Y.-C. Chang, X. Xu, J. Tang, Y. Gu, C.-W. Pao, S.-C. Haw, J.-M. Chen, Z. Hu, M. Ni, Z. Shao, Adv. Mater. 2023, 35, 2305074.
- 64S. Chen, Z. Kang, X. Zhang, J. Xie, H. Wang, W. Shao, X. Zheng, W. Yan, B. Pan, Y. Xie, ACS Cent. Sci. 2017, 3, 1221.
- 65E. Piskorska-Hommel, A. Ciupa-Litwa, Polyhedron 2022, 223, 115963.
- 66M. Wang, Q. Wa, X. Bai, Z. He, W. S. Samarakoon, Q. Ma, Y. Du, Y. Chen, H. Zhou, Y. Liu, X. Wang, Z. Feng, JACS Au 2021, 1, 2216.
- 67J. Chen, H. Li, S. Chen, J. Fei, C. Liu, Z. Yu, K. Shin, Z. Liu, L. Song, G. Henkelman, L. Wei, Y. Chen, Adv. Energy Mater. 2021, 11, 2003412.
- 68D. Gajdek, P. A. T. Olsson, S. Blomberg, J. Gustafson, P.-A. Carlsson, D. Haase, E. Lundgren, L. R. Merte, J. Phys. Chem. C 2022, 126, 3411.
- 69D. Zhou, S. Permien, J. Rana, M. Krengel, F. Sun, G. Schumacher, W. Bensch, J. Banhart, J. Power Sources 2017, 342, 56.
- 70M. Nasir, N. Patra, M. A. Ahmed, D. K. Shukla, S. Kumar, D. Bhattacharya, C. L. Prajapat, D. M. Phase, S. N. Jha, S. Biring, S. Sen, RSC Adv. 2017, 7, 31970.
- 71J. Okabayashi, S. Kono, Y. Yamada, K. Nomura, AIP Adv. 2011, 1, 042138.
10.1063/1.3662044 Google Scholar
- 72N. Li, R. G. Hadt, D. Hayes, L. X. Chen, D. G. Nocera, Nat. Commun. 2021, 12, 4218.
- 73D. Guan, J. Zhong, H. Xu, Y.-C. Huang, Z. Hu, B. Chen, Y. Zhang, M. Ni, X. Xu, W. Zhou, Z. Shao, Appl. Phys. Rev. 2022, 9, 011422.
- 74Y. Zhao, N. Dongfang, C. A. Triana, C. Huang, R. Erni, W. Wan, J. Li, D. Stoian, L. Pan, P. Zhang, Energy Environ. Sci. 2022, 15, 727.
- 75J. Zhu, Z. Zeng, W.-X. Li, J. Phys. Chem. C 2021, 125, 26229.
- 76J. Zhou, Y. Hu, Y.-C. Chang, Z. Hu, Y.-C. Huang, Y. Fan, H.-J. Lin, C.-W. Pao, C.-L. Dong, J.-F. Lee, C.-T. Chen, J.-Q. Wang, L. Zhang, ACS Catal. 2022, 12, 3138.
- 77X. Long, P. Yu, N. Zhang, C. Li, X. Feng, G. Ren, S. Zheng, J. Fu, F. Cheng, X. Liu, Nanomaterials 2019, 9, 577.
- 78C. Maurizio, N. El Habra, G. Rossetto, M. Merlini, E. Cattaruzza, L. Pandolfo, M. Casarin, Chem. Mater. 2010, 22, 1933.
- 79M. Risch, F. Ringleb, M. Kohlhoff, P. Bogdanoff, P. Chernev, I. Zaharieva, H. Dau, Energy Environ. Sci. 2015, 8, 661.
- 80A. Mariappan, R. K. Dharman, T. H. Oh, S. Prabu, K.-Y. Chiang, Colloids Surf. A 2023, 671, 131579.
- 81A. Mariappan, R. K. Dharman, T. H. Oh, Ceram. Int. 2023, 49, 29984.
- 82S. Vignesh, S. Nam, H. Kim, Int. J. Hydrogen Energy 2023, 53, 1445.
- 83D. Guan, K. Zhang, Z. Hu, X. Wu, J.-L. Chen, C.-W. Pao, Y. Guo, W. Zhou, Z. Shao, Adv. Mater. 2021, 33, 2103392.