Full-Spectrum Utilization of ZIF-67/Ag NPs/NaYF4:Yb,Er Photocatalysts for Efficient Degradation of Sulfadiazine: Upconversion Mechanism and DFT Calculation
Weijin Yang
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorCheng Bu
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorMin Zhao
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorYafei Li
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Shihai Cui
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jing Yang
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hongzhen Lian
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorWeijin Yang
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorCheng Bu
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorMin Zhao
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorYafei Li
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Shihai Cui
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jing Yang
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hongzhen Lian
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
In this work, novel ternary composite ZIF-67/Ag NPs/NaYF4:Yb,Er is synthesized by solvothermal method. The photocatalytic activity of the composite is evaluated by sulfadiazine (SDZ) degradation under simulated sunlight. High elimination efficiency of the composite is 95.4% in 180 min with good reusability and stability. The active species (h+, ·O2− and ·OH) are identified. The attack sites and degradation process of SDZ are deeply investigated based on theoretical calculation and liquid chromatography-mass spectrometry analysis. The upconversion mechanism study shows that favorable photocatalytic effectiveness is attributed to the full utilization of sunlight through the energy transfer upconversion process and fluorescence resonance energy transfer. Additionally, the composite is endowed with outstanding light-absorbing qualities and effective photogenerated electron–hole pair separation thanks to the localized surface plasmon resonance effect of Ag nanoparticles. This work can motivate further design of novel photocatalysts with upconversion luminescence performance, which are applied to the removal of sulphonamide antibiotics in the environment.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202309972-sup-0001-SuppMat.pdf1.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Q. Zhang, J. L. Liang, W. Zhang, M. Zhou, X. L. Zhu, Z. Y. Liu, Y. Li, Z. Q. Guan, C. S. Lee, P. K. Wong, H. M. Li, Z. F. Jiang, Appl. Catal. B 2023, 330, 122621.
- 2X. Chen, F. Deng, X. Liu, K. P. Cui, R. Weerasooriya, Sci. Total Environ. 2021, 774, 145776.
- 3M. Conde-Cid, D. Fernández-Calviño, J. C. Nóvoa-Muñoz, M. Arias-Estévez, M. Díaz-Raviña, A. Núñez-Delgado, M. J. Fernández-Sanjurjo, E. Álvarez-Rodríguez, J. Environ. Manage. 2018, 228, 239.
- 4W. Baran, E. Adamek, A. Sobczak, A. Makowski, Appl. Catal. B 2009, 90, 516.
- 5L. T. Qin, X. R. Pang, H. H. Zeng, Y. P. Liang, L. Y. Mo, D. Q. Wang, J. F. Dai, Sci. Total Environ. 2020, 708, 134552.
- 6S. Feizpoor, A. Habibi-Yangjeh, R. Luque, Chemosphere 2023, 336, 139101.
- 7X. L. Zou, T. Zhou, J. Mao, X. H. Wu, Chem. Eng. J. 2014, 257, 36.
- 8K. M. S. Hansena, A. Spiliotopouloub, R. K. Chhetria, M. E. Casasc, K. Besterc, H. R. Andersena, Chem. Eng. J. 2016, 290, 507.
- 9D. M. Ma, Y. Yang, B. F. Liu, G. J. Xie, C. Chen, N. Q. Ren, D. F. Xing, Chem. Eng. J. 2021, 408, 127992.
- 10C. Q. Tan, X. C. Jian, Y. J. Dong, X. Lu, X. Y. Liu, H. M. Xiang, X. X. Cui, J. Deng, H. Y. Gao, Chem. Eng. J. 2019, 359, 594.
- 11L. Wang, L. X. You, J. M. Zhang, T. Yang, W. Zhang, Z. X. Zhang, P. X. Liu, S. Wu, F. Zhao, J. Ma, J. Hazard. Mater. 2018, 360, 402.
- 12H. F. Fu, Z. Y. Feng, S. S. Liu, P. Wang, C. Zhao, C. C. Wang, Chin. Chem. Lett. 2023, 34, 107425.
- 13J. H. Wang, R. Abazari, S. Sanati, A. Ejsmont, J. Goscianska, Y. T. Zhou, D. P. Dubal, Small 2023, 19, 2300673.
- 14C. Jia, T. He, G. M. Wang, Coord. Chem. Rev. 2023, 476, 214930.
- 15Y. W. Gao, S. M. Li, Y. X. Li, L. Y. Yao, H. Zhang, Appl. Catal. B 2017, 202, 165.
- 16M. Peñas-Garzón, M. J. Sampaio, Y. L. L. Wang, J. Bedia, J. J. Rodriguez, C. Belver, C. G. Silva, J. L. Faria, Sep. Purif. Technol. 2022, 286, 120467.
- 17Y. Tang, X. L. Li, H. Zhang, T. W. Ouyang, Y. Jiang, M. M. Mu, X. H. Yin, Chemosphere 2020, 259, 127431.
- 18G. H. Zhong, D. X. Liu, J. Y. Zhang, J. Mater. Chem. A 2018, 6, 1887.
- 19G. M. Rain, S. M. Ghoreishian, K. S. Ranjith, S. H. Park, M. Lee, R. Umapathi, Y. K. Han, Y. S. Huh, Adv. Mater. Technol. 2023, 8, 2300685.
10.1002/admt.202300685 Google Scholar
- 20Y. B. Li, Z. L. Jin, T. S. Zhao, Chem. Eng. J. 2020, 382, 120051.
- 21Y. Wu, X. M. Li, Q. Yang, D. B. Wang, F. B. Yao, J. Cao, Z. Chen, X. D. Huang, Y. Yang, X. P. Li, Chem. Eng. J. 2020, 390, 124519.
- 22R. W. Liang, S. G. Luo, F. F. Jing, L. J. Shen, N. Qin, L. Wu, Appl. Catal. B 2015, 176, 240.
- 23I. Khan, A. H. Yuan, S. Khan, A. Khan, S. Khan, S. A. Shah, M. S. Luo, W. Yaseen, X. P. Shen, M. Yaseen, ACS Appl. Nano Mater. 2022, 5, 13404.
- 24R. Levinson, P. Berdahl, H. Akbari, Sol. Energy Mater. Sol. Cells 2012, 107, 337.
- 25D. D. Li, S. H. Yu, H. L. Jiang, Adv. Mater. 2018, 30, 1707377.
- 26Y. X. Zhuang, D. R. Chen, W. J. Chen, W. X. Zhang, X. Su, R. R. Deng, Z. F. An, H. M. Chen, R. J. Xie, Light Sci. Appl. 2021, 10, 132.
- 27M. Yu, X. Lv, A. M. Idris, S. Li, J. Lin, H. Lin, J. Wang, Z. Li, J. Colloid Interface Sci. 2022, 612, 782.
- 28F. Wang, X. G. Liu, Chem. Soc. Rev. 2009, 38, 976.
- 29Y. P. Wu, Z. Z. Cheng, X. H. Ling, L. L. Peng, C. H. Deng, Mater. Res. Bull. 2023, 163, 112232.
- 30B. Jin, S. Wang, M. Lin, Y. Jin, S. Zhang, X. Cui, Y. Gong, A. Li, F. Xu, T. J. Lu, Biosens. Bioelectron. 2017, 90, 525.
- 31H. Zhu, Y. Yang, Y. Kang, P. Niu, X. Kang, Z. Yang, H. Ye, G. Liu, J. Mater. Sci. Technol. 2022, 102, 1.
- 32Z. J. Wang, C. Wang, Q. Y. Han, G. Wang, M. D. Zhang, J. Zhang, W. Gao, H. R. Zheng, Mater. Res. Bull. 2017, 88, 182.
- 33N. Liu, W. P. Qin, G. S. Qin, T. Jiang, D. Zhao, ChemComm. 2011, 47, 7671.
- 34Z. Li, O. Johnson, J. Huang, T. Feng, C. Yang, Z. Liu, W. Chen, Mater. Res. Bull. 2018, 106, 365.
- 35H. Hu, B. Guan, B. Xia, X. W. Lou, J. Am. Chem. Soc. 2015, 137, 5590.
- 36F. Wang, X. Liu, J. Am. Chem. Soc. 2008, 130, 5642.
- 37P. Dai, Y. Yao, E. Hu, D. Xu, Z. Li, C. Wang, Appl. Surf. Sci. 2021, 546, 149128.
- 38J. Tang, Y. Liu, J. Q. Hu, S. B. Zheng, X. C. Wang, H. P. Zhou, B. K. Jin, Microchem. J. 2020, 155, 104759.
- 39M. A. Lafta, S. H. Ammar, Mater. Sci. Semicond. Process 2023, 153, 107131.
- 40T. He, Y. Liu, S. Q. Zhang, C. H. Meng, L. Li, H. Wang, D. S. Zhen, J. Nanopart Res. 2023, 25, 160.
- 41S. Li, M. Zhang, Z. Qu, X. Cui, Z. Liu, C. Piao, S. Li, J. Wang, Y. Song, Chem. Eng. J. 2020, 382, 122394.
- 42M. Hosny, M. Fawzy, A. S. Eltaweil, J. Environ. Manage. 2022, 316, 115238.
- 43M. Kohantorabi, S. Giannakis, G. Moussavi, M. Bensimon, M. R. Gholami, C. Pulgarin, J. Hazard. Mater. 2021, 413, 125308.
- 44M. J. Tou, Y. Y. Mei, S. Bai, Z. G. Luo, Y. Zhang, Z. Q. Li, Nanoscale 2016, 8, 553.
- 45H. H. Ren, F. H. Huang, J. M. Jiang, L. Wang, J. L. Zhang, Chem. Eng. J. 2022, 427, 132023.
- 46K. Du, X. Xu, S. Yao, P. Lei, L. Dong, M. Zhang, J. Feng, H. Zhang, CrystEngComm. 2018, 20, 1945.
- 47Z. G. Gao, J. Q. Zhang, S. J. Zhang, J. Wang, Y. H. Song, Chem. Eng. J. 2021, 421, 127829.
- 48J. N. Qin, S. B. Wang, X. C. Wang, Appl. Catal. B 2017, 209, 476.
- 49X. X. Sun, W. W. Xu, X. Q. Zhang, T. Z. Lei, S. Y. Lee, Q. L. Wu, J. Energy Chem. 2021, 52, 170.
- 50C. Yuan, P. F. Cheng, J. Li, X. L. Gao, X. S. Gao, X. Wang, M. L. Jin, R. Nötzel, G. F. Zhou, Z. Zhang, J. M. Liu, Microporous Mesoporous Mater. 2019, 285, 13.
- 51E. S. Elmorsy, W. A. Amer, A. Mahrous, M. M. Ayad, Mater. Sci. Eng. B 2023, 298, 116900.
- 52X. Y. Guo, C. F. Chen, D. Q. Zhang, C. P. Tripp, S. Y. Yin, W. P. Qin, RSC Adv. 2016, 6, 8127.
- 53K. L. Zhang, M. Zhou, C. L. Yu, K. Yang, X. X. Li, S. Yang, J. Guan, W. X. Dai, W. Y. Huang, J. Mater. Sci. 2020, 55, 10435.
- 54F. Liu, S. C. Zhang, D. Xu, F. Sun, W. L. Wang, X. Y. Li, W. S. Yu, X. T. Dong, G. X. Liu, H. Yu, J. Alloys Compd. 2022, 929, 167330.
- 55S. Singh, V. Takhar, S. H. Nannuri, S. D. George, R. Banerjee, S. K. Misra, ACS Appl. Nano Mater. 2023, 6, 10441.
- 56P. H. Bell, R. O. Roblin Jr., J. Am. Chem. Soc. 1942, 64, 2905.
- 57A. P. S. Batista, F. C. C. Pires, A. C. S. C. Teixeira, J. Photochem. Photobiol. A 2014, 290, 77.
- 58Q. L. Zeng, J. Sun, X. Y. Bai, Z. B. Xu, J. Clean. Prod. 2023, 396, 136495.
- 59Z. Wang, J. Cao, F. Meng, Water Res. 2015, 68, 404.
- 60M. M. Zhao, X. Y. Bai, Y. P. Zhang, Y. Yuan, J. Sun, J. Hazard. Mater. 2022, 430, 128350.
- 61G. Fang, C. Zhu, D. D. Dionysiou, J. Gao, D. Zhou, Bioresour. Technol. 2015, 176, 210.
- 62H. Li, T. F. Li, S. T. He, J. Zhou, T. C. Wang, L. Y. Zhu, Chem. Eng. J. 2020, 395, 125091.
- 63J. Hang, X. H. Yi, C. C. Wang, H. F. Fu, P. Wang, Y. Zhao, J. Hazard. Mater. 2022, 424, 127415.
- 64H. Y. Zhan, Q. X. Zhou, M. M. Li, R. R. Zhou, Y. S. Mao, P. F. Wang, Appl. Catal. B 2022, 310, 121329.
- 65Q. Su, J. Li, H. Y. Yuan, B. Wang, Y. H. Wang, Y. C. Li, Y. Xing, Chem. Eng. J. 2022, 427, 131594.
- 66Y. Duan, L. Deng, Z. Shi, X. Liu, H. Zeng, H. Zhang, J. Crittenden, J. Colloid Interface Sci. 2020, 561, 696.
- 67J. F. Yang, M. He, T. F. Wu, A. P. Hao, S. B. Zhang, Y. D. Chen, S. B. Zhou, L. Y. Zhen, R. Wang, Z. L. Yuan, L. Deng, Chem. Eng. J. 2018, 349, 56.
- 68X. Y. Guo, C. F. Chen, D. Q. Zhang, C. P. Tripp, S. Y. Yin, W. P. Qin, RSC Adv. 2016, 6, 8127.
- 69S. M. Lashgari, H. Yari, M. Mahdavian, B. Ramezanzadeh, G. Bahlakeh, M. Ramezanzadeh, J. Taiwan Inst. Chem. Eng. 2020, 117, 209.
- 70A. M. Tanvi, R. K. Bedi, S. Kumar, V. Saxena, A. Singh, D. K. Aswal, RSC Adv. 2016, 6, 48064.
- 71Y. J. Meng, L. X. Zhang, H. F. Jiu, Q. L. Zhang, H. Zhang, W. Ren, Y. Sun, D. T. Li, Mater. Sci. Semicond. Process. 2019, 95, 35.
- 72Y. B. Li, Z. L. Jin, T. S. Zhao, Chem. Eng. J. 2020, 282, 120051.
- 73X. J. Wen, Q. Lu, X. X. Lv, J. Sun, J. Guo, Z. H. Fei, C. G. Niu, J. Hazard. Mater. 2020, 385, 121508.
- 74D. P. Sun, D. C. Yang, P. Wei, B. Liu, Z. G. Chen, L. Y. Zhang, J. Lu, ACS Appl. Mater. Interfaces 2020, 12, 41960.
- 75J. Li, G. Z. Xie, J. Jiang, Y. Y. Liu, C. X. Chen, W. X. Li, J. L. Huang, X. L. Luo, M. Xu, Q. P. Zhang, M. Yang, Y. J. Su, Nano Energy 2023, 108, 108234.
- 76J. B. Zhao, Z. D. Lu, Y. D. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Y. Jin, E. M. Goldys, Nanoscale 2013, 5, 944.
- 77H. J. Cai, T. T. Shen, J. Zhang, C. F. Shan, J. G. Jia, X. Li, W. S. Liu, Y. Tang, J. Mater. Chem. B 2017, 5, 2390.
- 78R. Balaji, S. Kumar, K. L. Reddy, V. Sharma, B. K., V. Krishnan, J. Alloys Compd. 2017, 724, 481.
- 79M. He, X. C. Pang, X. Q. Liu, B. B. Jiang, Y. J. He, H. Snaith, Z. Q. Lin, Angew. Chem. Int. Ed. 2016, 55, 4280.
- 80Y. T. Li, J. L. Tang, L. C. He, Y. Liu, Y. L. Liu, C. Y. Chen, Z. Y. Tang, Adv. Mater. 2015, 27, 4075.