Unveiling Liquid-Phase Exfoliation of Graphite and Boron Nitride Using Fluorescent Dyes Through Combined Experiments and Simulations
Yilin He
CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000 France
Search for more papers by this authorXuliang Qian
School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorGuilherme Carneiro Queiroz da Silva
Department of Engineering and Architecture, University of Trieste, Trieste, 34127 Italy
Search for more papers by this authorCristian Gabellini
Department of Engineering and Architecture, University of Trieste, Trieste, 34127 Italy
Search for more papers by this authorMatteo Andrea Lucherelli
CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000 France
Instituto de Ciencia Molecular (ICMol), Universitat de Valencia, Carrer del Catedrátic José Beltrán Martinez, 2, Paterna, Valencia, 46980 Spain
Search for more papers by this authorGiacomo Biagiotti
Department of Chemistry ‘Ugo Schiff’, University of Firenze, Sesto Fiorentino, Firenze, 50019 Italy
Search for more papers by this authorCorresponding Author
Barbara Richichi
Department of Chemistry ‘Ugo Schiff’, University of Firenze, Sesto Fiorentino, Firenze, 50019 Italy
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCécilia Ménard-Moyon
CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000 France
Search for more papers by this authorCorresponding Author
Huajian Gao
School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Institute of High-Performance Computing, A*STAR, Singapore, 138632 Singapore
Department of Engineering Mechanics, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Paola Posocco
Department of Engineering and Architecture, University of Trieste, Trieste, 34127 Italy
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Alberto Bianco
CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000 France
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorYilin He
CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000 France
Search for more papers by this authorXuliang Qian
School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorGuilherme Carneiro Queiroz da Silva
Department of Engineering and Architecture, University of Trieste, Trieste, 34127 Italy
Search for more papers by this authorCristian Gabellini
Department of Engineering and Architecture, University of Trieste, Trieste, 34127 Italy
Search for more papers by this authorMatteo Andrea Lucherelli
CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000 France
Instituto de Ciencia Molecular (ICMol), Universitat de Valencia, Carrer del Catedrátic José Beltrán Martinez, 2, Paterna, Valencia, 46980 Spain
Search for more papers by this authorGiacomo Biagiotti
Department of Chemistry ‘Ugo Schiff’, University of Firenze, Sesto Fiorentino, Firenze, 50019 Italy
Search for more papers by this authorCorresponding Author
Barbara Richichi
Department of Chemistry ‘Ugo Schiff’, University of Firenze, Sesto Fiorentino, Firenze, 50019 Italy
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCécilia Ménard-Moyon
CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000 France
Search for more papers by this authorCorresponding Author
Huajian Gao
School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Institute of High-Performance Computing, A*STAR, Singapore, 138632 Singapore
Department of Engineering Mechanics, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Paola Posocco
Department of Engineering and Architecture, University of Trieste, Trieste, 34127 Italy
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Alberto Bianco
CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000 France
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Liquid-phase exfoliation (LPE) in aqueous solutions provides a simple, scalable, and green approach to produce 2D materials. By combining atomistic simulations with exfoliation experiments, the interaction between a surfactant and a 2D layer at the molecular scale can be better understood. In this work, two different dyes, corresponding to rhodamine B base (Rbb) and to a phenylboronic acid BODIPY (PBA-BODIPY) derivative, are employed as dispersants to exfoliate graphene and hexagonal boron nitride (hBN) through sonication-assisted LPE. The exfoliated 2D sheets, mostly as few-layers, exhibit good quality and high loading of dyes. Using molecular dynamics (MD) simulations, the binding free energies are calculated and the arrangement of both dyes on the layers are predicted. It has been found that the dyes show a higher affinity toward hBN than graphene, which is consistent with the higher yields of exfoliated hBN. Furthermore, it is demonstrated that the adsorption behavior of Rbb molecules on graphene and hBN is quite different compared to PBA-BODIPY.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202307817-sup-0001-SuppMat.pdf955.8 KB | Supporting Information |
smll202307817-sup-0002-MovieS1.mpg7.6 MB | Supplemental Movie 1 |
smll202307817-sup-0003-MovieS2.mpg5.6 MB | Supplemental Movie 2 |
smll202307817-sup-0004-MovieS3.mpg3.3 MB | Supplemental Movie 3 |
smll202307817-sup-0005-MovieS4.mpg4.8 MB | Supplemental Movie 4 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Zhu, D. Du, Y. Lin, 2D Mater. 2015, 2, 032004.
- 2P. Tao, S. Yao, F. Liu, B. Wang, F. Huang, M. Wang, J. Mater. Chem. A. 2019, 7, 23512.
- 3S. Angizi, S. A. A. Alem, M. Hasanzadeh Azar, F. Shayeganfar, M. I. Manning, A. Hatamie, A. Pakdel, A. Simchi, Prog. Mater. Sci. 2022, 124, 100884.
- 4S. Yu, X. Wang, H. Pang, R. Zhang, W. Song, D. Fu, T. Hayat, X. Wang, Chem. Eng. J. 2018, 333, 343.
- 5K. Hantanasirisakul, Y. Gogotsi, Adv. Mater. 2018, 30, 1804779.
- 6F. Shahzad, A. Iqbal, H. Kim, C. M. Koo, Adv. Mater. 2020, 32, 2002159.
- 7M. Chhowalla, Z. Liu, H. Zhang, Chem. Soc. Rev. 2015, 44, 2584.
- 8J. Ping, Z. Fan, M. Sindoro, Y. Ying, H. Zhang, Adv. Funct. Mater. 2017, 27, 1605817.
- 9L. Qin, S. Jiang, H. He, G. Ling, P. Zhang, J. Control Release. 2020, 318, 50.
- 10V. Eswaraiah, Q. Zeng, Y. Long, Z. Liu, Small. 2016, 12, 3480.
- 11S. M. Kim, A. Hsu, M. H. Park, S. H. Chae, S. J. Yun, J. S. Lee, D.-H. Cho, W. Fang, C. Lee, T. Palacios, M. Dresselhaus, K. K. Kim, Y. H. Lee, J. Kong, Nat. Commun. 2015, 6, 8662.
- 12N. Wang, G. Yang, H. Wang, C. Yan, R. Sun, C.-P. Wong, Mater. Today. 2019, 27, 33.
- 13W. Luo, Y. Wang, E. Hitz, Y. Lin, B. Yang, L. Hu, Adv. Funct. Mater. 2017, 27, 1701450.
- 14A. Ciesielski, P. Samorì, Adv. Mater. 2016, 28, 6030.
- 15A. Ciesielski, P. Samorì, Chem. Soc. Rev. 2014, 43, 381.
- 16X. Zhang, A. C. Coleman, N. Katsonis, W. R. Browne, B. J. Van Wees, B. L. Feringa, Chem. Commun. 2010, 46, 7539.
- 17A. Jawaid, D. Nepal, K. Park, M. Jespersen, A. Qualley, P. Mirau, L. F. Drummy, R. A. Vaia, Chem. Mater. 2016, 28, 337.
- 18S. Roy, A. Mondal, V. Yadav, A. Sarkar, R. Banerjee, P. Sanpui, A. Jaiswal, ACS Appl. Bio. Mater. 2019, 2, 2738.
- 19Z. Miao, D. Huang, Y. Wang, W.-J. Li, L. Fan, J. Wang, Y. Ma, Q. Zhao, Z. Zha, Adv. Funct. Mater. 2020, 30, 2001593.
- 20X. Xu, J. Wu, Z. Meng, Y. Li, Q. Huang, Y. Qi, Y. Liu, D. Zhan, X. Y. Liu, ACS Appl. Nano Mater. 2018, 1, 5460.
- 21C.-X. Hu, Y. Shin, O. Read, C. Casiraghi, Nanoscale. 2021, 13, 460.
- 22R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O'neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, J. N. Coleman, Adv. Mater. 2011, 23, 3944.
- 23D. Parviz, S. Das, H. S. T. Ahmed, F. Irin, S. Bhattacharia, M. J. Green, ACS Nano. 2012, 6, 8857.
- 24H. Yan, Y. Hernandez, A. Schlierf, A. Felten, A. Eckmann, S. Johal, P. Louette, J.-J. Pireaux, X. Feng, K. Mullen, V. Palermo, C. Casiraghi, Carbon. 2013, 53, 357.
- 25M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. Mcgovern, G. S. Duesberg, J. N. Coleman, J. Am. Chem. Soc. 2009, 131, 3611.
- 26S. De, P. J. King, M. Lotya, A. O'neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, J. N. Coleman, Small. 2010, 6, 458.
- 27X. Liu, G. Duan, W. Li, Z. Zhou, R. Zhou, RSC Adv. 2017, 7, 37873.
- 28M. A. Lucherelli, X. Qian, P. Weston, M. Eredia, W. Zhu, P. Samorì, H. Gao, A. Bianco, A. Von Dem Bussche, Adv. Mater. 2021, 33, 2103137.
- 29M. Beija, C. A. M. Afonso, J. M. G. Martinho, Chem. Soc. Rev. 2009, 38, 2410.
- 30T. Zhang, C. Ma, T. Sun, Z. Xie, Coord. Chem. Rev. 2019, 390, 76.
- 31C. Liu, C. N. Scott, Dyes Pigm. 2021, 196, 109792.
- 32Y. Su, S. Lu, P. Gao, M. Zheng, Z. Xie, Mater. Chem. Front. 2019, 3, 1747.
- 33Y. Xue, J. Lee, H.-J. Kim, H.-J. Cho, X. Zhou, Y. Liu, P. Tebon, T. Hoffman, M. Qu, H. Ling, X. Jiang, Z. Li, S. Zhang, W. Sun, S. Ahadian, M. R. Dokmeci, K. Lee, A. Khademhosseini, ACS Appl. Bio. Mater. 2020, 3, 6908.
- 34Z. Li, M. Zheng, X. Guan, Z. Xie, Y. Huang, X. Jing, Nanoscale. 2014, 6, 5662.
- 35V. Kumar, A. Kumar, D. J. Lee, S. S. Park, Materials 2021, 14, 4590.
- 36S. Atilgan, Z. Ekmekci, A. L. Dogan, D. Guc, E. U. Akkaya, Chem. Commun. 2006, 42, 4398.
- 37D. Maheshwaran, T. Nagendraraj, T. S. Balaji, G. Kumaresan, S. S. Kumaranc, R. Mayilmurugan, Dalton Trans. 2020, 41, 14680.
10.1039/D0DT02364G Google Scholar
- 38T. Loret, L. A. V. De Luna, M. A. Lucherelli, A. Fordham, N. Lozano, A. Bianco, K. Kostarelos, C. Bussy, Small. 2023, 19, 2301201.
- 39G. E. Giacomazzo, P. Palladino, C. Gellini, G. Salerno, V. Baldoneschi, A. Feis, S. Scarano, M. Minunni, B. Richichi, RSC Adv. 2019, 9, 30773.
- 40X. Qian, M. A. Lucherelli, C. Corcelle, A. Bianco, H. Gao, Forces Mech. 2022, 8, 100098.
10.1016/j.finmec.2022.100098 Google Scholar
- 41M. A. Creighton, W. Zhu, F. Van Krieken, R. A. Petteruti, H. Gao, R. H. Hurt, ACS Nano. 2016, 10, 2268.
- 42A. K. Malde, L. Zuo, M. Breeze, M. Stroet, D. Poger, P. C. Nair, C. Oostenbrink, A. E. Mark, J. Chem. Theory Comput. 2011, 7, 4026.
- 43S. Canzar, M. El-Kebir, R. Pool, K. Elbassioni, A. K. Malde, A. E. Mark, D. P. Geerke, L. Stougie, G. W. Klau, J. Comput. Biol. 2013, 20, 188.
- 44K. B. Koziara, M. Stroet, A. K. Malde, A. E. Mark, J. Comput. Aided Mol. Des. 2014, 28, 221.
- 45N. Schmid, A. P. Eichenberger, A. Choutko, S. Riniker, M. Winger, A. E. Mark, W. F. Van Gunsteren, Eur. Biophys. J. 2011, 40, 843.
- 46H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma, J. Phys. Chem. 1987, 91, 6269.
- 47X. Pan, H. Wang, C. Li, J. Z. H. Zhang, C. Ji, J. Chem. Inf. Model. 2021, 61, 3159.
- 48W. Hehre, R. Ditchfield, J. Pople, J. Chem. Phys. 1972, 56, 32.
- 49F. London, J. Phys. Radium. 1937, 8, 397.
- 50P. K. Walhout, Z. He, B. Dutagaci, G. Nawrocki, M. Feig, J. Phys. Chem. B. 2022, 126, 10256.
- 51U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, J. Phys. Chem. 1995, 103, 8577.
- 52J. Wang, Y. Deng, B. Roux, Biophys. J. 2006, 91, 2798.
- 53P. V. Klimovich, M. R. Shirts, D. L. Mobley, J. Comput. Aided Mol. Des. 2015, 29, 397.
- 54A. S. J. S. Mey, B. K. Allen, H. E. Bruce Macdonald, J. D. Chodera, D. F. Hahn, M. Kuhn, J. Michel, D. L. Mobley, L. N. Naden, S. Prasad, A. Rizzi, J. Scheen, M. R. Shirts, G. Tresadern, H. Xu, Living J. Comput. Mol. Sci. 2020, 2, 18378.
- 55A. M. Ferrenberg, R. H. Swendsen, Phys. Rev. Lett. 1989, 63, 1195.
- 56S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, P. A. Kollman, J. Comput. Chem. 1992, 13, 1011.
- 57B. Roux, Comput. Phys. Commun. 1995, 91, 275.
- 58M. Abraham, T. J. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, SoftwareX. 2015, 1, 19.
10.1016/j.softx.2015.06.001 Google Scholar
- 59S. Páll, M. J. Abraham, C. Kutzner, B. Hess, E. Lindahl, Lecture Notes in Computer Science, Springer, Cham 2015.
- 60S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. Van Der Spoel, B. Hess, E. Lindahl, Bioinformatics. 2013, 29, 845.
- 61B. Hess, C. Kutzner, D. Van Der Spoel, E. Lindahl, J. Chem. Theory Comput. 2008, 4, 435.
- 62D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. C. Berendsen, J. Comput. Chem. 2005, 26, 1701.
- 63E. Lindahl, B. Hess, D. Van Der Spoel, J. Mol. Model. 2001, 7, 306.
- 64H. J. C. Berendsen, D. Van Der Spoel, R. Van Drunen, Comput. Phys. Commun. 1995, 91, 43.
- 65W. Liu, C. Zhao, R. Zhou, D. Zhou, Z. Liu, X. Lu, Nanoscale. 2015, 7, 9919.
- 66M. A. Saiful Badri, M. M. Salleh, N. F. M. Noor, M. Y. A. Rahman, A. A. Umar, Mater. Chem. Phys. 2017, 193, 212.
- 67S.-R. Shin, D.-S. Lee, Nanomaterials. 2022, 12, 685.
- 68U. Kalsoom, M. S. Rafique, S. Shahzadi, K. Fatima, R. Shaheen, Mater. Sci. Pol. 2017, 35, 687.
- 69Z. Lin, P. Karthik, M. Hada, T. Nishikawa, Y. Hayashi, Nanomaterials. 2017, 7, 125.
- 70A. Chae, S.-J. Park, B. Min, I. In, Mater. Res. Express. 2018, 5, 015036.
- 71N. Mittal, G. Kedawat, S. G. Kanika, B. K. Gupta, Chemistry Select. 2020, 5, 12564.
- 72S. K. Mudedla, K. Balamurugan, V. Subramanian, J. Phys. Chem. C 2016, 120, 28246.
- 73T. R. Walsh, M. R. Knecht, Bioconjug. Chem. 2019, 30, 2727.
- 74M. Mijajlovic, M. J. Penna, M. J. Biggs, Langmuir 2013, 29, 2919.