Mg Compensating Design in the Melting-Sintering Method For High-Performance Mg3(Bi, Sb)2 Thermoelectric Devices
Yali Liu
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Deep Underground Sciences and Green Energy, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorYang Geng
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Deep Underground Sciences and Green Energy, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorYubo Dou
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Deep Underground Sciences and Green Energy, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorXuelian Wu
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Deep Underground Sciences and Green Energy, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorLipeng Hu
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Deep Underground Sciences and Green Energy, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorFusheng Liu
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Deep Underground Sciences and Green Energy, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorWeiqin Ao
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Deep Underground Sciences and Green Energy, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorCorresponding Author
Chaohua Zhang
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Deep Underground Sciences and Green Energy, Shenzhen University, Shenzhen, 518060 P. R. China
E-mail: [email protected]
Search for more papers by this authorYali Liu
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Deep Underground Sciences and Green Energy, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorYang Geng
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Deep Underground Sciences and Green Energy, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorYubo Dou
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Deep Underground Sciences and Green Energy, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorXuelian Wu
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Deep Underground Sciences and Green Energy, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorLipeng Hu
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Deep Underground Sciences and Green Energy, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorFusheng Liu
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Deep Underground Sciences and Green Energy, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorWeiqin Ao
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Deep Underground Sciences and Green Energy, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorCorresponding Author
Chaohua Zhang
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Deep Underground Sciences and Green Energy, Shenzhen University, Shenzhen, 518060 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
N-type Mg3(Bi, Sb)2-based thermoelectric (TE) alloys show great promise for solid-state power generation and refrigeration, owing to their excellent figure-of-merit (ZT) and using cheap Mg. However, their rigorous preparation conditions and poor thermal stability limit their large-scale applications. Here, this work develops an Mg compensating strategy to realize n-type Mg3(Bi, Sb)2 by a facile melting-sintering approach. “2D roadmaps” of TE parameters versus sintering temperature and time are plotted to understand the Mg-vacancy-formation and Mg-diffusion mechanisms. Under this guidance, high weight mobility of 347 cm2 V−1 s−1 and power factor of 34 µW cm−1 K−2 can be obtained for Mg3.05Bi1.99Te0.01, and a peak ZT≈1.55 at 723 K and average ZT≈1.25 within 323–723 K can be obtained for Mg3.05(Sb0.75Bi0.25)1.99Te0.01. Moreover, this Mg compensating strategy can also improve the interfacial connecting and thermal stability of corresponding Mg3(Bi, Sb)2/Fe TE legs. As a consequence, this work fabricates an 8-pair Mg3Sb2-GeTe-based power-generation device reaching an energy conversion efficiency of ≈5.0% at a temperature difference of 439 K, and a one-pair Mg3Sb2-Bi2Te3-based cooling device reaching −10.7 °C at the cold side. This work paves a facile way to obtain Mg3Sb2-based TE devices at low cost and also provides a guide to optimize the off-stoichiometric defects in other TE materials.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202303840-sup-0001-SuppMat.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105.
- 2X. L. Shi, J. Zou, Z. G. Chen, Chem. Rev. 2020, 120, 7399.
- 3L. E. Bell, Science 2008, 321, 1457.
- 4T. Zhu, Y. Liu, C. Fu, J. P. Heremans, J. G. Snyder, X. Zhao, Adv. Mater. 2017, 29, 1605884.
- 5T. Fang, X. Li, C. Hu, Q. Zhang, J. Yang, W. Zhang, X. Zhao, D. J. Singh, T. Zhu, Adv. Funct. Mater. 2019, 29, 1900677.
- 6T. Zhu, L. Hu, X. Zhao, J. He, Adv. Sci. 2016, 3, 1600004.
- 7S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, S. W. Kim, Science 2015, 348, 109.
- 8B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, Science 2008, 320, 634.
- 9P. Ying, X. Li, Y. Wang, J. Yang, C. Fu, W. Zhang, X. Zhao, T. Zhu, Adv. Funct. Mater. 2017, 27, 1604145.
- 10Z. Liu, H. Geng, J. Mao, J. Shuai, R. He, C. Wang, W. Cai, J. Sui, Z. Ren, J. Mater. Chem. A 2016, 4, 16834.
- 11Y. Zheng, C. Liu, L. Miao, C. Li, R. Huang, J. Gao, X. Wang, J. Chen, Y. Zhou, E. Nishibori, Nano Energy 2019, 59, 311.
- 12H. Tamaki, H. K. Sato, T. Kanno, Adv. Mater. 2016, 28, 10182.
- 13J. Zhang, L. Song, S. H. Pedersen, H. Yin, L. T. Hung, B. B. Iversen, Nat. Commun. 2017, 8, 13901.
- 14J. Mao, J. Shuai, S. Song, Y. Wu, R. Dally, J. Zhou, Z. Liu, J. Sun, Q. Zhang, C. dela Cruz, S. Wilson, Y. Pei, D. J. Singh, G. Chen, C.-W. Chu, Z. Ren, Proc. Natl. Acad. Sci. USA 2017, 114, 10548.
- 15J. Shuai, J. Mao, S. Song, Q. Zhu, J. Sun, Y. Wang, R. He, J. Zhou, G. Chen, D. J. Singh, Z. Ren, Energy Environ. Sci. 2017, 10, 799.
- 16X. Shi, T. Zhao, X. Zhang, C. Sun, Z. Chen, S. Lin, W. Li, H. Gu, Y. Pei, Adv. Mater. 2019, 31, 1903387.
- 17S. Ohno, K. Imasato, S. Anand, H. Tamaki, S. D. Kang, P. Gorai, H. K. Sato, E. S. Toberer, T. Kanno, G. J. Snyder, Joule 2018, 2, 141.
- 18A. Li, C. Fu, X. Zhao, T. Zhu, Research 2020, 2020, 1934848.
- 19J. Mao, Y. Wu, S. Song, Q. Zhu, J. Shuai, Z. Liu, Y. Pei, Z. Ren, ACS Energy Lett. 2017, 2, 2245.
- 20J. Mao, H. Zhu, Z. Ding, Z. Liu, G. A. Gamage, G. Chen, Z. Ren, Science 2019, 365, 495.
- 21X. Shi, X. Wang, W. Li, Y. Pei, Small Methods 2018, 2, 1800022.
- 22J. Ding, T. Lanigan-Atkins, M. Calderón-Cueva, A. Banerjee, D. L. Abernathy, A. Said, A. Zevalkink, O. Delaire, Sci. Adv. 2021, 7, eabg1449.
- 23Z. Bu, X. Zhang, Y. Hu, Z. Chen, S. Lin, W. Li, C. Xiao, Y. Pei, Nat. Commun. 2022, 13, 237.
- 24J. Li, S. Zhang, F. Jia, S. Zheng, X. Shi, D. Jiang, S. Wang, G. Lu, L. Wu, Z.-G. Chen, Mater. Today Phys. 2020, 15, 100269.
- 25X. Wu, Y. Lin, Z. Han, H. Li, C. Liu, Y. Wang, P. Zhang, K. Zhu, F. Jiang, J. Huang, H. Fan, F. Cheng, B. Ge, W. Liu, Adv. Energy Mater. 2022, 12, 2203039.
- 26H. Shang, Q. Zou, L. Zhang, Z. Liang, S. Song, B. Hong, H. Gu, Z. Ren, F. Ding, Nano Energy 2023, 109, 108270.
- 27C. G. V. d Walle, J. Neugebauer, J. Appl. Phys. 2004, 95, 3851.
- 28P. Li, T. Ding, J. Li, C. Zhang, Y. Dou, Y. Li, L. Hu, F. Liu, C. Zhang, Adv. Funct. Mater. 2020, 30, 1910059.
- 29C. Zhang, X. Geng, B. Chen, J. Li, A. Meledin, L. Hu, F. Liu, J. Shi, J. Mayer, M. Wuttig, O. Cojocaru-Mirédin, Y. Yu, Small 2021, 17, 2104067.
- 30C. L. Condron, S. M. Kauzlarich, F. Gascoin, G. J. Snyder, J. Solid State Chem. 2006, 179, 2252.
- 31V. Ponnambalam, D. T. Morelli, J. Electron. Mater. 2013, 42, 1307.
- 32A. Bhardwaj, A. Rajput, A. K. Shukla, J. J. Pulikkotil, A. K. Srivastava, A. Dhar, G. Gupta, S. Auluck, D. K. Misra, R. C. Budhani, RSC Adv. 2013, 3, 8504.
- 33J. Zhang, L. Song, B. B. Iversen, Adv. Sci. 2020, 7, 2002867.
- 34L. Hu, T. Zhu, X. Liu, X. Zhao, Adv. Funct. Mater. 2014, 24, 5211.
- 35H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G. J. Snyder, Nat. Mater. 2012, 11, 422.
- 36P.-a. Zong, R. Hanus, M. Dylla, Y. Tang, J. Liao, Q. Zhang, G. J. Snyder, L. Chen, Energy Environ. Sci. 2017, 10, 183.
- 37T. Xing, C. Zhu, Q. Song, H. Huang, J. Xiao, D. Ren, M. Shi, P. Qiu, X. Shi, F. Xu, L. Chen, Adv. Mater. 2021, 33, 2008773.
- 38K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, M. G. Kanatzidis, Nature 2012, 489, 414.
- 39X. Chen, H. Wu, J. Cui, Y. Xiao, Y. Zhang, J. He, Y. Chen, J. Cao, W. Cai, S. J. Pennycook, Z. Liu, L.-D. Zhao, J. Sui, Nano Energy 2018, 52, 246.
- 40K. Imasato, S. D. Kang, S. Ohno, G. J. Snyder, Mater. Horiz. 2018, 5, 59.
- 41F. Zhang, C. Chen, H. Yao, F. Bai, L. Yin, X. Li, S. Li, W. Xue, Y. Wang, F. Cao, X. Liu, J. Sui, Q. Zhang, Adv. Funct. Mater. 2019, 30, 1906143.
- 42J. S. Liang, X. L. Shi, Y. Peng, W. D. Liu, H. Q. Yang, C. Y. Liu, J. L. Chen, Q. Zhou, L. Miao, Z. G. Chen, Adv. Energy Mater. 2022, 12, 2201086.
- 43J. Yang, G. Li, H. Zhu, N. Chen, T. Lu, J. Gao, L. Guo, J. Xiang, P. Sun, Y. Yao, R. Yang, H. Zhao, Joule 2022, 6, 193.
- 44Y. Fu, Q. Zhang, Z. Hu, M. Jiang, A. Huang, X. Ai, S. Wan, H. Reith, L. Wang, K. Nielsch, W. Jiang, Energy Environ. Sci. 2022, 15, 3265.
- 45R. Shu, Z. Han, A. Elsukova, Y. Zhu, P. Qin, F. Jiang, J. Lu, P. O. A. Persson, J. Palisaitis, A. le Febvrier, W. Zhang, O. Cojocaru-Miredin, Y. Yu, P. Eklund, W. Liu, Adv. Sci. 2022, 9, 2202594.
- 46J. W. Li, W. Liu, W. Xu, H. L. Zhuang, Z. Han, F. Jiang, P. Zhang, H. Hu, H. Gao, Y. Jiang, B. Cai, J. Pei, B. Su, Q. Li, K. Hayashi, H. Li, Y. Miyazaki, X. Cao, Q. Zheng, J. F. Li, Adv. Mater. 2023, 35, 2209119.
- 47J. Zhang, L. Song, A. Mamakhel, M. R. V. Jørgensen, B. B. Iversen, Chem. Mater. 2017, 29, 5371.
- 48X. Shi, C. Sun, Z. Bu, X. Zhang, Y. Wu, S. Lin, W. Li, A. Faghaninia, A. Jain, Y. Pei, Adv. Sci. 2019, 6, 1802286.
- 49X. Shi, C. Sun, X. Zhang, Z. Chen, S. Lin, W. Li, Y. Pei, Chem. Mater. 2019, 31, 8987.
- 50M. Wood, J. J. Kuo, K. Imasato, G. J. Snyder, Adv. Mater. 2019, 31, 1902337.
- 51K. Imasato, S. D. Kang, G. J. Snyder, Energy Environ. Sci. 2019, 12, 965.
- 52Z. Liu, W. Gao, H. Oshima, K. Nagase, C. H. Lee, T. Mori, Nat. Commun. 2022, 13, 1120.
- 53R. Shu, Y. Zhou, Q. Wang, Z. Han, Y. Zhu, Y. Liu, Y. Chen, M. Gu, W. Xu, Y. Wang, W. Zhang, L. Huang, W. Liu, Adv. Funct. Mater. 2019, 29, 1807235.
- 54Z. Liu, N. Sato, W. Gao, K. Yubuta, N. Kawamoto, M. Mitome, K. Kurashima, Y. Owada, K. Nagase, C.-H. Lee, J. Yi, K. Tsuchiya, T. Mori, Joule 2021, 5, 1196.
- 55J. Zhang, L. Song, B. B. Iversen, ACS Appl. Mater. Interfaces 2021, 13, 10964.
- 56Z. Bu, X. Zhang, Y. Hu, Z. Chen, S. Lin, W. Li, Y. Pei, Energy Environ. Sci. 2021, 14, 6506.
- 57Q. Q. Wang, F. Li, S. Q. Xia, J. Liu, X. C. Liu, L. Chen, C. Q. Zhang, Adv. Electron. Mater. 2021, 8, 2101125.
10.1002/aelm.202101125 Google Scholar
- 58K. Imasato, C. Fu, Y. Pan, M. Wood, J. J. Kuo, C. Felser, G. J. Snyder, Adv. Mater. 2020, 32, 1908218.
- 59A. Li, P. Nan, Y. Wang, Z. Gao, S. Zhang, Z. Han, X. Zhao, B. Ge, C. Fu, T. Zhu, Acta Mater. 2022, 239, 118301.
- 60T. Luo, J. J. Kuo, K. J. Griffith, K. Imasato, O. Cojocaru-Miredin, M. Wuttig, B. Gault, Y. Yu, G. J. Snyder, Adv. Funct. Mater. 2021, 31, 2100258.
- 61K. Imasato, M. Wood, J. J. Kuo, G. J. Snyder, J. Mater. Chem. A 2018, 6, 19941.
- 62M. Ozen, M. Yahyaoglu, C. Candolfi, I. Veremchuk, F. Kaiser, U. Burkhardt, G. J. Snyder, Y. Grin, U. Aydemir, J. Mater. Chem. A 2021, 9, 1733.
- 63J. Lei, H. Wuliji, K. Zhao, T.-R. Wei, Q. Xu, P. Li, P. Qiu, X. Shi, J. Mater. Chem. A 2021, 9, 25944.
- 64J. Liang, H. Yang, C. Liu, L. Miao, J. Chen, S. Zhu, Z. Xie, W. Xu, X. Wang, J. Wang, B. Peng, K. Koumoto, ACS Appl. Mater. Interfaces 2020, 12, 21799.
- 65Y. Lin, M. Wood, K. Imasato, J. J. Kuo, D. Lam, A. N. Mortazavi, T. J. Slade, S. A. Hodge, K. Xi, M. G. Kanatzidis, D. R. Clarke, M. C. Hersam, G. J. Snyder, Energy Environ. Sci. 2020, 13, 4114.
- 66J. Li, F. Jia, S. Zhang, S. Zheng, B. Wang, L. Chen, G. Lu, L. Wu, J. Mater. Chem. A 2019, 7, 19316.
- 67G. J. Snyder, A. H. Snyder, M. Wood, R. Gurunathan, B. H. Snyder, C. Niu, Adv. Mater. 2020, 32, 2001537.
- 68J. J. Kuo, S. D. Kang, K. Imasato, H. Tamaki, S. Ohno, T. Kanno, G. J. Snyder, Energy Environ. Sci. 2018, 11, 429.
- 69H. Shang, Z. Liang, C. Xu, S. Song, D. Huang, H. Gu, J. Mao, Z. Ren, F. Ding, Acta Mater. 2020, 201, 572.
- 70C. Xu, M. Jian, Z. Liang, B.-H. Lei, S. Song, F. Zhang, D. J. Singh, Z. Feng, Z. Ren, Nano Energy 2023, 106, 108036.
- 71C. Zhang, G. Yan, Y. Wang, X. Wu, L. Hu, F. Liu, W. Ao, O. Cojocaru-Mirédin, M. Wuttig, G. J. Snyder, Y. Yu, Adv. Energy Mater. 2023, 13, 2203361.
- 72S. Roychowdhury, T. Ghosh, R. Arora, M. Samanta, L. Xie, N. K. Singh, A. Soni, J. He, U. V. Waghmare, K. Biswas, Science 2021, 371, 722.
- 73N. K. Singh, A. Soni, Appl. Phys. Lett. 2020, 117, 223903.
- 74N. K. Singh, A. Kashyap, A. Soni, Appl. Phys. Lett. 2021, 119, 223903.
- 75H.-S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, G. J. Snyder, APL Mater. 2015, 3, 041506.