Efficient Photocatalytic H2O2 Production Ability of a Novel Graphitic Carbon Nitride/Carbon Composites under Visible Light
Corresponding Author
Huagen Liang
Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou, 221008 China
School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221008 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAnhu Wang
Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou, 221008 China
School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221008 China
Search for more papers by this authorRuolin Cheng
Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou, 221008 China
Search for more papers by this authorCorresponding Author
Xinlong Tian
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorShengyu Jing
School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221008 China
Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Str., Pedion Areos, 38334 Greece
Search for more papers by this authorCorresponding Author
Panagiotis Tsiakaras
Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Str., Pedion Areos, 38334 Greece
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Huagen Liang
Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou, 221008 China
School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221008 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAnhu Wang
Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou, 221008 China
School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221008 China
Search for more papers by this authorRuolin Cheng
Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou, 221008 China
Search for more papers by this authorCorresponding Author
Xinlong Tian
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorShengyu Jing
School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221008 China
Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Str., Pedion Areos, 38334 Greece
Search for more papers by this authorCorresponding Author
Panagiotis Tsiakaras
Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Str., Pedion Areos, 38334 Greece
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAbstract
In the present work, using one-step calcination of a mixture made of potassium hydroxide (KOH), melamine, and microplastics, this work prepares a novel graphitic carbon nitride/carbon (g-C3N4/C) composite, which can be employed to photo-catalytically produce hydrogen peroxide (H2O2) at a high rate up to 6.146 mmol g−1 h−1 under visible light irradiation. By analyzing the energy band structure of the catalyst, the production of H2O2 in this system consists of two single-electron reactions. The modification of KOH makes abundant N-vacancies caused by cyano-groups in g-C3N4, enhancing the electron absorption ability. Moreover, the introduction of graphitic carbon increases its specific surface area and porosity and improves the adsorption ability of O2. Simultaneously, their synergism reduces the g-C3N4 band gap, making both the conduction-band and valence-band positions more negative, showing enhanced reduction ability, lowering the energy barrier for oxygen reduction, and greatly improving the photogeneration performance of H2O2.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202303813-sup-0001-SuppMat.pdf432.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. H. Yi, L. Wang, G. Li, H. C. Guo, Catal. Sci. Technol. 2016, 6, 1593.
- 2C. Xia, Y. Xia, P. Zhu, L. Fan, H. Wang, Science 2019, 366, 226.
- 3R. S. Disselkamp, Energy Fuels 2008, 22, 2771.
- 4J. M. Campos-Martin, G. Blanco-Brieva, J. L. G. Fierro, Angew. Chem., Int. Ed. 2006, 45, 6962.
- 5Y. Zhang, M. Fang, X. Qian, L. Zhang, P. Gu, Y. Liu, H. Yang, J. Mater. Res. 2021, 36, 3495.
- 6K. Jiang, S. Back, A. J. Akey, C. Xia, Y. F. Hu, W. T. Liang, D. Schaak, E. Stavitski, J. K. Norskov, S. Siahrostami, H. T. Wang, Nat. Commun. 2019, 10, 3997.
- 7H. I. Kim, O. S. Kwon, S. Kim, W. Choi, J. H. Kim, Energy Environ. Sci. 2016, 9, 1063.
- 8Y.-Y. Li, B.-X. Zhou, H.-W. Zhang, S.-F. Ma, W.-Q. Huang, W. Peng, W. Hu, G.-F. Huang, Nanoscale 2019, 11, 6876.
- 9B. Yang, Z. W. Wang, J. J. Zhao, X. Y. Sun, R. J. Wang, G. F. Liao, X. Jia, Int. J. Hydrog. Energy 2021, 46, 25436.
- 10L. Zhou, J. R. Feng, B. C. Qiu, Y. Zhou, J. Y. Lei, M. Y. Xing, L. Z. Wang, Y. B. Zhou, Y. D. Liu, J. L. Zhang, Appl. Catal. B 2020, 267, 118396.
- 11L. Xue, H. Sun, Q. Wu, W. F. Yao, J. Colloid Interface Sci. 2022, 615, 87.
- 12Z. D. Zhu, H. H. Pan, M. Murugananthan, J. Y. Gong, Y. R. Zhang, Appl. Catal. B 2018, 232, 19.
- 13H. J. Yu, R. Shi, Y. X. Zhao, T. Bian, Y. F. Zhao, C. Zhou, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, T. R. Zhang, Adv. Mater. 2017, 29, 1605148.
- 14M. Wu, J. M. Yan, X. N. Tang, M. Zhao, Q. Jiang, ChemSusChem 2014, 7, 2654.
- 15T. Xiong, W. L. Cen, Y. X. Zhang, F. Dong, ACS Catal. 2016, 6, 2462.
- 16Y. Y. Wang, S. Zhao, Y. W. Zhang, J. S. Fang, Y. M. Zhou, S. H. Yuan, C. Zhang, W. X. Chen, Appl. Surf. Sci. 2018, 440, 258.
- 17Z. X. Sun, J. M. T. A. Fischer, Q. A. Li, J. Hu, Q. J. Tang, H. Q. Wang, Z. B. Wu, M. Hankel, D. J. Searles, L. Z. Wang, Appl. Catal. B 2017, 216, 146.
- 18M. Zhang, X. J. Bai, D. Liu, J. Wang, Y. F. Zhu, Appl. Catal. B 2015, 164, 77.
- 19R. M. Kenzhin, Y. I. Bauman, A. M. Volodin, I. V. Mishakov, V. I. Zaikovskii, A. A. Vedyagin, SN Applied Sciences 2018, 1, 139.
10.1007/s42452-018-0152-2 Google Scholar
- 20J. Min, X. Wen, T. Tang, X. Chen, K. Huo, J. Gong, J. Azadmanjiri, C. He, E. Mijowska, ChemComm 2020, 56, 9142.
- 21C. Song, L. Hao, B. Zhang, Z. Dong, Q. Tang, J. Min, Q. Zhao, R. Niu, J. Gong, T. Tang, Sci. China Mater. 2020, 63, 779.
- 22C. Wang, R. Sun, R. Huang, H. Wang, Sep. Purif. Technol. 2021, 270, 118773.
- 23B. Li, Z. Tian, L. Li, Y.-H. Wang, Y. Si, H. Wan, J. Shi, G.-F. Huang, W. Hu, A. Pan, W.-Q. Huang, ACS Nano 2023, 17, 3465.
- 24A. H. Wang, H. G. Liang, F. Chen, X. L. Tian, S. B. Yin, S. Y. Jing, P. Tsiakaras, Appl. Catal. B 2022, 310, 121336.
- 25S. Z. Hu, F. Y. Li, Z. P. Fan, F. Wang, Y. F. Zhao, Z. B. Lv, Dalton Trans. 2015, 44, 1084.
- 26X. Y. Zhang, J. Q. Qin, R. R. Hao, L. M. Wang, X. Shen, R. C. Yu, S. Limpanart, M. Z. Ma, R. P. Liu, J. Phys. Chem. C 2015, 119, 20544.
- 27B. W. Liu, C. B. Bie, Y. Zhang, L. X. Wang, Y. J. Li, J. G. Yu, Langmuir 2021, 37, 14114.
- 28J. Wang, G. H. Wang, B. Cheng, J. G. Yu, J. J. Fan, Chin. J. Catal. 2021, 42, 56.
- 29J. W. Fu, Q. L. Xu, J. X. Low, C. J. Jiang, J. G. Yu, Appl. Catal. B 2019, 243, 556.
- 30R. A. He, K. Y. Cheng, Z. Y. Wei, S. Y. Zhang, D. F. Xu, Appl. Surf. Sci. 2019, 465, 964.
- 31H. L. Gao, S. C. Yan, J. J. Wang, Y. A. Huang, P. Wang, Z. S. Li, Z. G. Zou, Phys. Chem. Chem. Phys. 2013, 15, 18077.
- 32K. Wang, J. L. Fu, Y. Zheng, Appl. Catal. B 2019, 254, 270.
- 33S. Zhao, X. Zhao, Appl. Catal. B 2019, 250, 408.
- 34S. Zhao, X. Zhao, S. X. Ouyang, Y. F. Zhu, Catal. Sci. Technol. 2018, 8, 1686.
- 35G.-h. Moon, M. Fujitsuka, S. Kim, T. Majima, X. Wang, W. Choi, ACS Catal. 2017, 7, 2886.
- 36S. Zhao, T. Guo, X. Li, T. G. Xu, B. Yang, X. Zhao, Appl. Catal. B 2018, 224, 725.
- 37H. H. Yang, X. R. Qian, N. Zhang, L. Zhang, M. J. Zhou, New J. Chem. 2021, 45, 22591.