A “Win–Win” Strategy to Modify Co/C Foam with Carbon Microspheres for Enhanced Dielectric Loss and Microwave Absorption Characteristics
Fengyuan Wang
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorYonglei Liu
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorRida Feng
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorXuan Wang
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Xijiang Han
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yunchen Du
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorFengyuan Wang
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorYonglei Liu
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorRida Feng
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorXuan Wang
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Xijiang Han
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yunchen Du
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
3D carbon foams have demonstrated their superiority in the field of microwave absorption recently, but the preparation processes of traditional graphene foams are complicated, while some novel carbon foams usually suffer from inadequate dielectric property. Herein, a simple “win–win” strategy is demonstrated to synchronously realize the construction of 3D Co/C foam and its surface decoration with carbon microspheres. Therein, the host Co/C foams and guest carbon microspheres interact with each other, resulting in the improvement of the dispersity of carbon microspheres and Co nanoparticles. The bilaterally synergistic effect can effectively enhance the interfacial polarization and conductive loss of these obtained samples. Electromagnetic analysis reveals that the optimized sample with moderate carbon microsphere content (about 33.5 wt%) displays a widened maximum effective absorption bandwidth of 5.2 GHz and a consolidated reflection loss intensity of −67.6 dB. Besides, the microwave absorption enhancement mechanisms are investigated and discussed in detail. It is believed that this work provides valuable ideas for the development of 3D-foam-based microwave absorbing materials for practical applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202303597-sup-0001-SuppMat.pdf613 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) L. Chen, Y. Li, B. Zhao, S. Liu, H. Zhang, K. Chen, M. Li, S. Du, F. Xiu, R. Che, Z. Chai, Q. Huang, Adv. Sci. 2023, 10, 2206877; b) H. Xu, G. Zhang, Y. Wang, M. Ning, B. Ouyang, Y. Zhao, Y. Huang, P. Liu, Nano-Micro Lett. 2022, 14, 102; c) M. Chang, Q. Li, Z. Jia, W. Zhao, G. Wu, J. Mater. Sci. Technol. 2023, 148, 150; d) H. Gao, C. Wang, Z. Yang, Y. Zhang, Chem. Eng. J. 2020, 389, 124478; e) C. Wang, H. Gao, D. Liang, S. Liu, H. Zhang, H. Guan, Y. Wu, Y. Zhang, Adv. Compos. Hybrid Mater. 2022, 5, 2906.
- 2a) P. Liu, S. Gao, G. Zhang, Y. Huang, W. You, R. Che, Adv. Funct. Mater. 2021, 31, 2102812; b) Y. Zhang, M. Qiu, Y. Yu, B. Wen, L. Cheng, ACS Appl. Mater. Interfaces 2017, 9, 809; c) Z. Wu, H. W. Cheng, C. Jin, B. Yang, C. Xu, K. Pei, H. Zhang, Z. Yang, R. Che, Adv. Mater. 2022, 34, 2107538; d) H. Wang, Q. An, Z. Xiao, Y. Tong, L. Guo, S. Zhai, L. Xiao, C. Ha, J. Mater. Chem. A 2022, 10, 17023; e) H. Gao, C. Wang, Z. Yang, Y. Zhang, Compos. Sci. Technol. 2021, 213, 108896.
- 3a) Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, Y. Chen, Adv. Mater. 2015, 27, 2049; b) M. Zhang, H. Ling, T. Wang, Y. Jiang, G. Song, W. Zhao, L. Zhao, T. Cheng, Y. Xie, Y. Guo, W. Zhao, L. Yuan, A. Meng, Z. Li, Nano-Micro Lett. 2022, 14, 157; c) Y. Li, L. Gai, G. Song, Q. An, Z. Xiao, S. Zhai, Carbon 2022, 186, 238.
- 4F. Wang, P. Xu, N. Shi, L. Cui, Y. Wang, D. Liu, H. Zhao, X. Han, Y. Du, J. Mater. Sci. Technol. 2021, 93, 7.
- 5a) D. Liu, L. Yang, F. Wang, H. Zhang, J. Liu, T. Lv, H. Zhao, Y. Du, Carbon 2022, 196, 867; b) F. Wang, Y. Liu, H. Zhao, L. Cui, L. Gai, X. Han, Y. Du, Chem. Eng. J. 2022, 450, 138160; c) D. Liu, Y. Du, P. Xu, N. Liu, Y. Wang, H. Zhao, L. Cui, X. Han, J. Mater. Chem. C 2019, 7, 5037.
- 6a) D. Liu, R. Qiang, Y. Du, Y. Wang, C. Tian, X. Han, J. Colloid Interface Sci. 2018, 514, 10; b) Y. Wang, X. Li, X. Han, P. Xu, L. Cui, H. Zhao, D. Liu, F. Wang, Y. Du, Chem. Eng. J. 2020, 387, 124159; c) Y. Wang, M. Zhang, X. Deng, Z. Li, Z. Chen, J. Shi, X. Han, Y. Du, Int. J. Miner., Metall. Mater. 2023, 30, 3; d) B. Han, W. Chu, X. Han, P. Xu, D. Liu, L. Cui, Y. Wang, H. Zhao, Y. Du, Carbon 2020, 168, 404.
- 7X. Chen, Y. Wu, W. Gu, M. Zhou, S. Tang, J. Cao, Z. Zou, G. Ji, Carbon 2022, 189, 617.
- 8a) L. Wang, X. Li, X. Shi, M. Huang, X. Li, Q. Zeng, R. Che, Nanoscale 2021, 13, 2136; b) F. Wang, L. Cui, H. Zhao, X. Han, Y. Du, J. Appl. Phys. 2021, 130, 230902; c) R. Qiang, Y. Du, Y. Wang, N. Wang, C. Tian, J. Ma, P. Xu, X. Han, Carbon 2016, 98, 599.
- 9Y. Dong, M. Yu, Z. Wang, Y. Liu, X. Wang, Z. Zhao, J. Qiu, Adv. Funct. Mater. 2016, 26, 7590.
- 10A. C. Ferrari, J. Robertson, Phys. Rev. B 2000, 61, 14095.
- 11F. Wang, N. Wang, X. Han, D. Liu, Y. Wang, L. Cui, P. Xu, Y. Du, Carbon 2019, 145, 701.
- 12Z. Li, X. Han, Y. Ma, D. Liu, Y. Wang, P. Xu, C. Li, Y. Du, ACS Sustainable Chem. Eng. 2018, 6, 8904.
- 13a) M. S. Niasari, F. Davar, M. Mazaheri, M. Shaterian, J. Magn. Magn. Mater. 2008, 320, 575; b) Y. Zhu, Y. Liu, Y. Gao, Q. Cheng, L. zhao, Z. Yang, Mater. Res. Bull. 2017, 87, 135.
- 14D. Liu, Y. Du, Z. Li, Y. Wang, P. Xu, H. Zhao, F. Wang, C. Li, X. Han, J. Mater. Chem. C 2018, 6, 9615.
- 15D. L. Leslie-Pelecky, R. D. Rieke, Chem. Mater. 1996, 8, 1770.
- 16S. Diamond, Cem. Concr. Res. 2000, 30, 1517.
- 17H. Zhao, X. Xu, Y. Wang, D. Fan, D. Liu, K. Lin, P. Xu, X. Han, Y. Du, Small 2020, 16, 2003407.
- 18a) D. Liu, Y. Du, P. Xu, F. Wang, Y. Wang, L. Cui, H. Zhao, X. Han, J. Mater. Chem. A 2021, 9, 5086; b) Z. Wu, K. Pei, L. Xing, X. Yu, W. You, R. Che, Adv. Funct. Mater. 2019, 29, 1901448.
- 19H. Zhao, X. Xu, D. Fan, P. Xu, F. Wang, L. Cui, X. Han, Y. Du, J. Mater. Chem. A 2021, 9, 22489.
- 20a) L. Cui, C. Tian, L. Tang, X. Han, Y. Wang, D. Liu, P. Xu, C. Li, Y. Du, ACS Appl. Mater. Interfaces 2019, 11, 31182; b) A. Ohlan, K. Singh, A. Chandra, S. K. Dhawan, ACS Appl. Mater. Interfaces 2010, 2, 927.
- 21B. Zhao, Y. Li, Q. Zeng, L. Wang, J. Ding, R. Zhang, R. Che, Small 2020, 16, 2003502.
- 22a) Y. Wang, P. Zhao, B. Liang, K. Chen, G. Wang, Carbon 2023, 202, 66; b) Y. Bi, M. Ma, Z. Liao, Z. Tong, Y. Chen, R. Wang, Y. Ma, G. Wu, J. Colloid Interface Sci. 2022, 605, 483; c) K. Tian, Y. Huang, C. Zhang, R. Shu, J. Zhu, Y. Liu, Z. Chen, C. Li, X. Liu, J. Colloid Interface Sci. 2022, 620, 454; d) R. Yu, X. Wen, J. Liu, Y. Wang, X. Chen, K. Wenelska, E. Mijowska, T. Tang, Appl. Catal., B 2021, 298, 120544; e) P. Zhou, M. Wang, Z. Song, Y. Guan, L. Wang, Q. Zhang, J. Mater. Sci. Technol. 2022, 108, 10; f) Z. Jia, M. Kong, B. Yu, Y. Ma, J. Pan, G. Wu, J. Mater. Sci. Technol. 2022, 127, 153; g) J. Cheng, H. Zhao, A. Zhang, Y. Wang, Y. Wang, J. Mater. Sci. Technol. 2022, 108, 10; h) Z. Jia, M. Kong, B. Yu, Y. Ma, J. Pan, G. Wu, J. Mater. Sci. Technol. 2022, 126, 266; i) H. Liu, P. Wang, Z. Sun, Z. Yan, A. Li, Z. Guo, L. Qian, ACS Appl. Nano Mater. 2022, 5, 17335; j) C. Wu, J. Wang, X. Zhang, L. Kang, X. Cao, Y. Zhang, Y. Niu, Y. Yu, H. Fu, Z. Shen, K. Wu, Z. Yong, J. Zou, B. Wang, Z. Chen, Z. Yang, Q. Li, Nano-Micro Lett. 2023, 15, 7.
- 23a) C. Tian, Y. Du, H. Xu, J. Xue, W. Chu, R. Qiang, X. Han, P. Xu, Appl. Phys. Lett. 2017, 111, 133103; b) Y. Liu, C. Tian, F. Wang, B. Hu, P. Xu, X. Han, Chem. Eng. J. 2023, 461, 141867.
- 24a) J. Luo, M. Feng, Z. Dai, C. Jiang, W. Yao, N. Zhai, Nano Res. 2022, 15, 5781; b) L. Gai, G. Song, Y. Li, W. Niu, L. Qin, Q. An, Z. Xiao, S. Zhai, Carbon 2021, 179, 111; c) L. Gai, Y. Zhao, G. Song, Q. An, Z. Xiao, S. Zhai, Z. Li, Composites, Part A 2020, 136, 105965.
- 25L. Wang, X. Yu, X. Li, J. Zhang, M. Wang, R. Che, Chem. Eng. J. 2020, 383, 123099.
- 26M. Yuan, B. Zhao, C. Yang, K. Pei, L. Wang, R. Zhang, W. You, X. Liu, X. Zhang, R. Che, Adv. Funct. Mater. 2022, 32, 2203161.