An Emerging Family of Piezocatalysts: 2D Piezoelectric Materials
Cheng-Chao Jin
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024 P. R. China
Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050 P. R. China
Search for more papers by this authorDai-Ming Liu
College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, 99 Songling Road, Qingdao, 266061 P. R. China
Search for more papers by this authorCorresponding Author
Ling-Xia Zhang
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024 P. R. China
Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050 P. R. China
E-mail: [email protected]
Search for more papers by this authorCheng-Chao Jin
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024 P. R. China
Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050 P. R. China
Search for more papers by this authorDai-Ming Liu
College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, 99 Songling Road, Qingdao, 266061 P. R. China
Search for more papers by this authorCorresponding Author
Ling-Xia Zhang
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024 P. R. China
Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Piezocatalysis is an emerging technique that holds great promise for the conversion of ubiquitous mechanical energy into electrochemical energy through piezoelectric effect. However, mechanical energies in natural environment (such as wind energy, water flow energy, and noise) are typically tiny, scattered, and featured with low frequency and low power. Therefore, a high response to these tiny mechanical energies is critical to achieving high piezocatalytic performance. In comparison to nanoparticles or 1D piezoelectric materials, 2D piezoelectric materials possess characteristics such as high flexibility, easy deformation, large surface area, and rich active sites, showing more promise in future for practical applications. In this review, state-of-the-art research progresses on 2D piezoelectric materials and their applications in piezocatalysis are provided. First, a detailed description of 2D piezoelectric materials are offered. Then a comprehensive summary of the piezocatalysis technique is presented and examines the piezocatalysis applications of 2D piezoelectric materials in various fields, including environmental remediation, small-molecule catalysis, and biomedicine. Finally, the main challenges and prospects of 2D piezoelectric materials and their applications in piezocatalysis are discussed. It is expected that this review can fuel the practical application of 2D piezoelectric materials in piezocatalysis.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1M. D. Maeder, D. Damjanovic, N. Setter, J Electroceram 2004, 13, 385.
- 2C. Zhao, H. Wu, F. Li, Y. Cai, Y. Zhang, D. Song, J. Wu, X. Lyu, J. Yin, D. Xiao, J. Zhu, S. J. Pennycook, J. Am. Chem. Soc. 2018, 140, 15252.
- 3J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, F.-Z. Yao, D. J. Green, J. Am. Ceram. Soc. 2013, 96, 3677.
- 4C. Jin, F. Wang, C. M. Leung, Q. Yao, Y. Tang, T. Wang, W. Shi, Appl. Surf. Sci. 2013, 283, 348.
- 5a) C. C. Jin, F. F. Wang, Q. R. Yao, Y. X. Tang, T. Wang, W. Z. Shi, Ceram. Int. 2014, 40, 6143; b) W. Zhao, J. Ya, Y. Xin, L. E. D. Zhao, H. Zhou, J. Am. Ceram. Soc. 2009, 92, 1607; c) P. Fu, Z. Xu, R. Chu, W. Li, G. Zang, J. Hao, Mater. Chem. Phys. 2010, 124, 1065.
- 6Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 2004, 432, 84.
- 7W. Liu, X. Ren, Phys. Rev. Lett. 2009, 103, 257602.
- 8Z. Wang, J. Song, Science 2006, 312, 242.
- 9a) J. Shim, D. I. Son, J. S. Lee, J. Lee, G.-H. Lim, H. Cho, E.-y. Kim, S. D. Bu, S. Im, C. K. Jeong, S. Rezvani, S. S. Park, Y. J. Park, Nano Energy 2022, 93, 106886; b) W. Deng, Y. Zhou, A. Libanori, G. Chen, W. Yang, J. Chen, Chem. Soc. Rev. 2022, 51, 3380; c) C. C. Jin, X. C. Liu, C. H. Liu, Y. Wang, H. L. Hwang, Q. Wang, Mater. Des. 2018, 144, 55; d) C. C. Jin, C. H. Liu, X. C. Liu, Y. Wang, H. L. Hwang, Ceram. Int. 2018, 44, 17391.
- 10W. Wu, L. Cheng, S. Bai, W. Dou, Q. Xu, Z. Wei, Y. Qin, J. Mater. Chem. A 2013, 1, 7332.
- 11M. Yao, L. Li, Y. Wang, D. Yang, L. Miao, H. Wang, M. Liu, K. Ren, H. Fan, D. Hu, ACS Sustainable Chem. Eng. 2022, 10, 3276.
- 12S. Panda, S. Hajra, H. Jeong, B. K. Panigrahi, P. Pakawanit, D. Dubal, S. Hong, H. J. Kim, Nano Energy 2022, 102, 107682.
- 13a) J. M. Wu, W. E. Chang, Y. T. Chang, C. K. Chang, Adv. Mater. 2016, 28, 3718; b) J. H. Lin, Y. H. Tsao, M. H. Wu, T.-M. Chou, Z. H. Lin, J. M. Wu, Nano Energy 2017, 31, 575; c) M. H. Wu, J. T. Lee, Y. J. Chung, M. Srinivaas, J. M. Wu, Nano Energy 2017, 40, 369; d) C. Jin, D. Liu, M. Li, Y. Wang, Z. He, M. Xu, X. Li, H. Ying, Y. Wu, Q. Zhang, J. Alloy. Compd. 2019, 811, 152063; e) Y. Sun, X. Li, A. Vijayakumar, H. Liu, C. Wang, S. Zhang, Z. Fu, Y. Lu, Z. Cheng, ACS Appl. Mater. Interfaces 2021, 13, 11050.
- 14Y. C. Wang, J. M. Wu, Adv. Funct. Mater. 2020, 30, 1907619.
- 15Z. Ren, F. Chen, Q. Zhao, G. Zhao, H. Li, W. Sun, H. Huang, T. Ma, Appl Catal B 2023, 320, 122007.
- 16Y. Feng, L. Ling, Y. Wang, Z. Xu, F. Cao, H. Li, Z. Bian, Nano Energy 2017, 40, 481.
- 17R. Su, H. A. Hsain, M. Wu, D. Zhang, X. Hu, Z. Wang, X. Wang, F. T. Li, X. Chen, L. Zhu, Y. Yang, Y. Yang, X. Lou, S. J. Pennycook, Angew. Chem Int. Edit. 2019, 58, 15076.
- 18X. Xu, X. Lin, F. Yang, S. Huang, X. Cheng, J. Phys. Chem. C 2020, 124, 24126.
- 19X. Huang, R. Lei, J. Yuan, F. Gao, C. Jiang, W. Feng, J. Zhuang, P. Liu, Appl Catal B 2021, 282, 119586.
- 20F. Wang, J.-T. Zhang, C.-C. Jin, X.-C. Ke, F.-F. Wang, D.-M. Liu, Nano Energy 2022, 101, 107573.
- 21D. Liu, C. Jin, Y. Zhang, Y. He, F. Wang, Ceram. Int. 2021, 47, 7692.
- 22a) S. Li, Z. Zhao, J. Li, H. Liu, M. Liu, Y. Zhang, L. Su, A. I. Perez-Jimenez, Y. Guo, F. Yang, Y. Liu, J. Zhao, J. Zhang, L. D. Zhao, Y. Lin, Small 2022, 18, 2202507; b) C. Y. Wang, F. Chen, C. Hu, T. Y. Ma, Y. H. Zhang, H. W. Huang, Chem. Eng. J. 2022, 431, 133930.
- 23a) X. Cai, Y. Luo, B. Liu, H. M. Cheng, Chem. Soc. Rev. 2018, 47, 6224; b) C. Tan, X. Cao, X. J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G. H. Nam, M. Sindoro, H. Zhang, Chem. Rev. 2017, 117, 6225.
- 24a) R. Q. Liu, X.-R. Shi, Y. Wen, X. X. Shao, C. Su, J. Hu, S. S. Xu, J Energy Chem 2022, 74, 149; b) X. R. Zhang, C. Y. Sun, S. S. Xu, M. R. Huang, Y. Wen, X.-R. Shi, Nano Res. 2022, 15, 8897; c) Y. Zhu, L. Peng, Z. Fang, C. Yan, X. Zhang, G. Yu, Adv. Mater. 2018, 30, 1706347; d) X. Zhang, L. Hou, A. Ciesielski, P. Samorì, Adv. Energy Mater. 2016, 6, 1600671.
- 25K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
- 26a) P. Miro, M. Audiffred, T. Heine, Chem. Soc. Rev. 2014, 43, 6537; b) B. Luo, G. Liu, L. Wang, Nanoscale 2016, 8, 6904; c) V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, J. N. Coleman, Science 2013, 340, 1420.
- 27a) Z. Wang, B. Mi, Environ. Sci. Technol. 2017, 51, 8229; b) H. Li, J. Wu, Z. Yin, H. Zhang, Acc. Chem. Res. 2014, 47, 1067; c) A. K. Nayak, S. Lee, Y. Sohn, D. Pradhan, CrystEngComm 2014, 16, 8064.
- 28Z.-K. Kong, Y. Chen, J.-Z. Hua, Y.-Z. Zhang, L. Zhan, Y.-L. Wang, New Carbon Mater 2021, 36, 810.
- 29a) J. Wang, F. Ma, W. Liang, M. Sun, Mater. Today Phys. 2017, 2, 6; b) X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, M. S. Dresselhaus, Nano Lett. 2014, 14, 3033.
- 30a) J. W. Fu, J. G. Yu, C. J. Jiang, B. Cheng, Adv. Energy Mater. 2018, 8, 1701503; b) X. Hao, J. Zhou, Z. Cui, Y. Wang, Y. Wang, Z. Zou, Appl Catal B 2018, 229, 41; c) Q. Xiang, J. Yu, M. Jaroniec, J. Phys. Chem. C 2011, 115, 7355.
- 31K. Zhang, B. Jin, C. Park, Y. Cho, X. Song, X. Shi, S. Zhang, W. Kim, H. Zeng, J. H. Park, Nat. Commun. 2019, 10, 2001.
- 32F. A. Rasmussen, K. S. Thygesen, J. Phys. Chem. C 2015, 119, 13169.
- 33C. H. Ahn, K. M. Rabe, J.-M. Triscone, Science 2004, 303, 488.
- 34P. C. Sherrell, M. Fronzi, N. A. Shepelin, A. Corletto, D. A. Winkler, M. Ford, J. G. Shapter, A. V. Ellis, Chem. Soc. Rev. 2022, 51, 650.
- 35M. Smith, S. Kar-Narayan, Int. Mater. Rev. 2021, 67, 65.
- 36M. N. Blonsky, H. L. Zhuang, A. K. Singh, R. G. Hennig, ACS Nano 2015, 9, 9885.
- 37a) K. H. Michel, B. Verberck, Phys. Rev. B 2011, 83, 115328; b) K. H. Michel, B. Verberck, Phys. Rev. B 2009, 80, 224301.
- 38K.-A. N. Duerloo, M. T. Ong, E. J. Reed, J. Phys. Chem. Lett. 2012, 3, 2871.
- 39a) Y. L. Zhou, W. Liu, X. Huang, A. H. Zhang, Y. Zhang, Z. L. Wang, Nano Res. 2016, 9, 800; b) P. Wang, F. Sun, S. Xiong, Z. Zhang, B. Duan, C. Zhang, J. Feng, B. Xi, Angew. Chem Int. Edit. 2022, 61, 202116048; c) M. Chubarov, T. H. Choudhury, D. R. Hickey, S. Bachu, T. Zhang, A. Sebastian, A. Bansal, H. Zhu, N. Trainor, S. Das, M. Terrones, N. Alem, J. M. Redwing, ACS Nano 2021, 15, 2532.
- 40T. Dan, M. Willatzen, Z. L. Wang, Nano Energy 2019, 56, 512.
- 41R. J. Toh, Z. Sofer, J. Luxa, D. Sedmidubsky, M. Pumera, Chem. Commun. 2017, 53, 3054.
- 42a) F. Wypych, R. Schöllhorn, J Chem Soc Chem Commun 1992, 19, 1386; b) H. He, H. Zhang, D. Huang, W. Kuang, X. Li, J. Hao, Z. Guo, C. Zhang, Adv. Mater. 2022, 34, 2200397.
- 43a) Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, T. F. Heinz, Nano Lett. 2013, 13, 3329; b) W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, Z. L. Wang, Nature 2014, 514, 470; c) H. Zhu, Y. Wang, J. Xiao, M. Liu, S. Xiong, Z. J. Wong, Z. Ye, Y. Ye, X. Yin, X. Zhang, Nat. Nanotechnol. 2015, 10, 151.
- 44H. Hallil, W. F. Cai, K. Zhang, P. Yu, S. Liu, R. Xu, C. Zhu, Q. H. Xiong, Z. Liu, Q. Zhang, Adv. Electron. Mater. 2022, 8, 2101131.
- 45S. Li, Z. C. Zhao, D. F. Yu, J. Z. Zhao, Y. P. Su, Y. Liu, Y. H. Lin, W. S. Liu, H. Xu, Z. T. Zhang, Nano Energy 2019, 66, 104083.
- 46a) Y. Zeng, H. Li, J. Luo, J. Yuan, L. Wang, C. Liu, Y. Xia, M. Liu, S. Luo, T. Cai, S. Liu, J. C. Crittenden, Appl Catal B 2019, 249, 275; b) D. M. Teter, R. J. Hemley, Science 1996, 271, 53.
- 47a) R. D. Tang, D. X. Gong, Y. Y. Zhou, Y. C. Deng, C. Y. Feng, S. Xiong, Y. Huang, G. W. Peng, L. Li, Appl Catal B 2022, 303, 120929; b) R.-C. Wang, Y.-C. Lin, H.-C. Chen, W.-Y. Lin, Nano Energy 2021, 83, 105743; c) Y. H. Wang, L. Z. Liu, T. Y. Ma, Y. H. Zhang, H. W. Huang, Adv. Funct. Mater. 2021, 31, 2102540.
- 48a) R. Hinchet, U. Khan, C. Falconi, S.-W. Kim, Mater. Today 2018, 21, 611; b) M. Zelisko, Y. Hanlumyuang, S. Yang, Y. Liu, C. Lei, J. Li, P. M. Ajayan, P. Sharma, Nat. Commun. 2014, 5, 4284.
- 49a) Z. Bonakchi, A. Nakhaei Pour, S. Soheili, J. Iran. Chem. Soc. 2022, 19, 3649; b) J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 2017, 391, 72.
- 50a) Y. Xu, S.-P. Gao, Int. J. Hydrogen Energy 2012, 37, 11072; b) J. Sehnert, K. Baerwinkel, J. Senker, J. Phys. Chem. B 2007, 111, 10671.
- 51a) C. Hu, J. Hu, Z. Zhu, Y. Lu, S. Chu, T. Ma, Y. Zhang, H. Huang, Angew. Chem Int. Edit. 2022, 61, 202212397; b) S. S. Shinde, C. H. Lee, A. Sami, D. H. Kim, S. U. Lee, J. H. Lee, ACS Nano 2017, 11, 347.
- 52a) S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 2015, 27, 2150; b) S. Y. Zhang, L. N. Gao, D. L. Fan, X. M. Lv, Y. Li, Z. X. Yan, Chem. Phys. Lett. 2017, 672, 26; c) L. W. Ruan, G. S. Xu, L. N. Gu, C. Li, Y. J. Zhu, Y. X. Lu, Mater. Res. Bull. 2015, 66, 156; d) Z. Pei, J. Gu, Y. Wang, Z. Tang, Z. Liu, Y. Huang, Y. Huang, J. Zhao, Z. Chen, C. Zhi, ACS Nano 2017, 11, 6004.
- 53C. W. Yan, Z. Zhao, W. H. Jin, Q. Yu, J. Yu, J. H. Ran, S. G. Bi, D. S. Cheng, D. Q. Li, G. M. Cai, X. Wang, Etoiles Compos. Chim. Anorm. Debut Sequence Princ., Commun. Colloq. Int. Astrophys., 23rd 2023, 37, 101466.
- 54S.-D. Guo, W.-Q. Mu, Y.-T. Zhu, J. Phys. Chem. Solids 2021, 151, 109896.
- 55a) J. Eichler, C. Lesniak, J. Eur. Ceram. Soc. 2008, 28, 1105;
b) S. Hasan, I. Ahmad, Electron. Mater. 2022, 3, 235.
10.3390/electronicmat3030020 Google Scholar
- 56J. Marcelo, J. Lopes, Prog. Cryst. Growth Charact. Mater. 2021, 67, 100522.
- 57S. Angizi, S. A. A. Alem, A. Pakdel, Energies 2022, 15, 1162.
- 58a) K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 2004, 3, 404; b) O. Hod, J. Chem. Theory Comput. 2012, 8, 1360.
- 59H. B. Baytar, M. M. Alyörük, Phys. Status Solidi B 2020, 257, 1900733.
- 60a) P. Fang, H. Fan, Z. Xi, W. Chen, S. Chen, W. Long, X. Li, J. Alloy. Compd. 2013, 550, 335; b) S. Liu, P. E. R. Blanchard, M. Avdeev, B. J. Kennedy, C. D. Ling, J. Solid State Chem. 2013, 205, 165.
- 61S. Kojima, Ferroelectrics 2020, 569, 122.
- 62a) H. Djani, P. Hermet, P. Ghosez, J. Phys. Chem. C 2014, 118, 13514; b) X. L. Liu, J. Xiao, S. Ma, C. X. Shi, L. Pan, J. J. Zou, ChemNanoMat 2021, 7, 684; c) H. Takeda, J. S. Han, M. Nishida, T. Shiosaki, T. Hoshina, T. Tsurumi, Solid State Commun. 2010, 150, 836; d) X. L. Xu, L. B. Xiao, Z. Wu, Y. M. Jia, X. Ye, F. F. Wang, B. Yuan, Y. Yu, H. T. Huang, G. F. Zou, Nano Energy 2020, 78, 105351.
- 63J. You, Z. Liu, Z. Guo, M. Ruan, W. Yan, ACS Appl. Energy Mater. 2022, 5, 11472.
- 64J. F. Scott, C. A. Araujo, Science 1989, 246, 1400.
- 65T. Chen, L. Z. Liu, C. Hu, H. W. Huang, Chinese J. Catal. 2021, 42, 1413.
- 66Y. Noguchi, K. Murata, M. Miyayama, Appl. Phys. Lett. 2006, 89, 242916.
- 67V. K. Yanovskii, V. I. Voronkova, Phys. Status Solidi A 1986, 93, 57.
- 68T. Zeng, H. Yan, H. Ning, J. Zeng, M. J. Reece, J. Am. Ceram. Soc. 2009, 92, 3108.
- 69a) T. M. Khedr, K. Wang, D. Kowalski, S. M. El-Sheikh, H. M. Abdeldayem, B. Ohtani, E. Kowalska, J. Environ. Chem. Eng. 2022, 10, 107838; b) M. H. Selvi, P. R. Vanga, M. Ashok, Optik 2018, 173, 227.
- 70W. Ma, J. Lu, B. Wan, D. Peng, Q. Xu, G. Hu, Y. Peng, C. Pan, Z. L. Wang, Adv. Mater. 2020, 32, 1905795.
- 71L. B. Drissi, S. Sadki, K. Sadki, J. Phys. Chem. Solids 2018, 112, 137.
- 72W. Li, J. Li, Nano Res. 2015, 8, 3796.
- 73Y. Wang, Y. Xu, S. Dong, P. Wang, W. Chen, Z. Lu, D. Ye, B. Pan, D. Wu, C. D. Vecitis, G. Gao, Nat. Commun. 2021, 12, 3508.
- 74a) H. L. You, Z. Wu, L. H. Zhang, Y. R. Ying, Y. Liu, L. F. Fei, X. X. Chen, Y. M. Jia, Y. J. Wang, F. F. Wang, S. Ju, J. L. Qiao, C. H. Lam, H. T. Huang, Angew. Chem Int. Edit. 2019, 58, 11779; b) E. Lin, N. Qin, J. Wu, B. Yuan, Z. Kang, D. Bao, ACS Appl. Mater. Interfaces 2020, 12, 14005; c) Y. Bai, J. Zhao, Z. Lv, K. Lu, J. Mater. Sci. 2020, 55, 14112.
- 75T. Cossuet, E. Appert, J. L. Thomassin, V. Consonni, Langmuir 2017, 33, 6269.
- 76a) S. Rafique, A. K. Kasi, Aminullah, J. K. K., M. Bokhari, S. Zafar, Curr. Appl. Phys. 2021, 21, 72; b) H. Q. Ni, Y. F. Lu, Z. Y. Liu, H. Qiu, W. J. Wang, Z. M. Ren, S. K. Chow, Y. X. Jie, Appl. Phys. Lett. 2001, 79, 812; c) Y.-H. Lin, M. Ying, M. Li, X. Wang, C.-W. Nan, Appl. Phys. Lett. 2007, 90, 222110; d) M. Joseph, H. Tabata, T. Kawai, Appl. Phys. Lett. 1999, 74, 2534; e) K. Batra, N. Sinha, S. Goel, H. Yadav, A. J. Joseph, B. Kumar, J. Alloy. Compd. 2018, 767, 1003; f) R. Zhang, M. Hummelgård, M. Olsen, J. Örtegren, H. Olin, Semicond. Sci. Tech. 2017, 32, 054002; g) Y. Lee, S. Kim, D. Kim, C. Lee, H. Park, J.-H. Lee, Appl. Surf. Sci. 2020, 509, 145328.
- 77N. Sinha, G. Ray, S. Godara, M. K. Gupta, B. Kumar, Mater. Res. Bull. 2014, 59, 267.
- 78J. G. Hao, W. Li, J. W. Zhai, H. Chen, Mater Sci Eng R Rep 2019, 135, 1.
- 79G. Mamba, P. J. Mafa, V. Muthuraj, A. Mashayekh-Salehi, S. Royer, T. I. T. Nkambule, S. Rtimi, Mater. Today Nano 2022, 18, 100184.
- 80Q. Tang, J. Wu, D. Kim, C. Franco, A. Terzopoulou, A. Veciana, J. Puigmartí-Luis, X. Z. Chen, B. J. Nelson, S. Pané, Adv. Funct. Mater. 2022, 32, 2202180.
- 81K. Hagiwara, K. N. Byun, S. Morita, E. Yamamoto, M. Kobayashi, X. Liu, M. Osada, Adv. Electron. Mater. 2023, 9, 2201239.
- 82C. J. Cui, F. Xue, W.-J. Hu, L.-J. Li, npj 2D Mater. Appl. 2018, 2, 18.
- 83M. Osada, T. Sasaki, Adv. Mater. 2012, 24, 210.
- 84C. Y. Yu, M. X. Tan, Y. Li, C. B. Liu, R. W. Yin, H. M. Meng, Y. J. Su, L. J. Qiao, Y. Bai, J. Colloid Interf. Sci. 2021, 596, 288.
- 85a) A. J. Lovinger, Science 1983, 220, 1115; b) Y. C. Wu, J. K. Yim, J. M. Liang, Z. C. Shao, M. J. Qi, J. W. Zhong, Z. H. Luo, X. J. Yan, M. Zhang, X. H. Wang, R. S. Fearing, R. J. Full, L. W. Lin, Sci Robot 2019, 4, eaax1594.
- 86a) R. Sahoo, S. Mishra, L. Unnikrishnan, S. Mohanty, S. Mahapatra, S. K. Nayak, S. Anwar, A. Ramadoss, Mat. Sci. Semicon. Proc. 2020, 117, 105173; b) G. Singh, M. Sharma, R. Vaish, ACS Appl. Mater. Interfaces 2021, 13, 22914.
- 87G. Cheon, K. N. Duerloo, A. D. Sendek, C. Porter, Y. Chen, E. J. Reed, Nano Lett. 2017, 17, 1915.
- 88R. Gao, Y. Gao, Phys. Status Solidi RRL 2017, 11, 1600412.
- 89Y. X. Liu, W. Qu, H. C. Thong, Y. Zhang, Y. Zhang, F. Z. Yao, T. N. Nguyen, J. W. Li, M. H. Zhang, J. F. Li, B. Han, W. Gong, H. Wu, C. Wu, B. Xu, K. Wang, Adv. Mater. 2022, 34, 2202558.
- 90S. V. Kalinin, A. Rar, S. Jesse, IEEE Trans Ultrason Ferroelectr Freq Control 2006, 53, 2226.
- 91a) A. Gruverman, M. Alexe, D. Meier, Nat. Commun. 2019, 10, 1661; b) Q. Liu, Y. Zhang, J. Gao, Z. Zhou, H. Wang, K. Wang, X. Zhang, L. Li, J.-F. Li, Energy Environ. Sci. 2018, 11, 3531.
- 92K. F. Wang, D. K. Shao, L. Zhang, Y. Y. Zhou, H. P. Wang, W. Z. Wang, J. Mater. Chem. A 2019, 7, 20383.
- 93Y. Sun, S. Shen, W. Deng, G. Tian, D. Xiong, H. Zhang, T. Yang, S. Wang, J. Chen, W. Yang, Nano Energy 2023, 105, 108024.
- 94Y. Cui, Z. Wang, B. Li, Y. Yan, R. Xu, M. Meng, Y. Yan, Nano Energy 2022, 99, 107429.
- 95H. Lei, Q. He, M. Wu, Y. Xu, P. Sun, X. Dong, J. Hazard. Mater. 2022, 421, 126696.
- 96B. Liu, B. Lu, X. Q. Chen, X. Wu, S. J. Shi, L. Xu, Y. Liu, F. F. Wang, X. Y. Zhao, W. Z. Shi, J. Mater. Chem. A 2017, 5, 23634.
- 97P.-K. Yang, S.-A. Chou, C.-H. Hsu, R. J. Mathew, K.-H. Chiang, J.-Y. Yang, Y.-T. Chen, Nano Energy 2020, 75, 104879.
- 98Y. Wang, L. M. Vu, T. Lu, C. Xu, Y. Liu, J. Z. Ou, Y. Li, ACS Appl. Mater. Interfaces 2020, 12, 51662.
- 99S. S. Yarajena, R. Biswas, V. Raghunathan, A. K. Naik, Sci. Rep. 2021, 11, 7066.
- 100D. Seol, B. Kim, Y. Kim, Curr. Appl. Phys. 2017, 17, 661.
- 101a) J.-D. Ai, C.-C. Jin, D.-M. Liu, J.-T. Zhang, L.-X. Zhang, ChemCatChem 2023, 15, 202201316; b) Y. He, Z. Xu, Y. He, G. Cao, S. Ni, Y. Tang, J. Wang, Y. Yuan, Z. Ma, D. Wang, D. Gao, Biomaterials 2022, 290, 121816; c) Z. Li, T. Zhang, F. Fan, F. Gao, H. Ji, L. Yang, J. Phys. Chem. Lett. 2020, 11, 1228.
- 102K. S. Hong, H. Xu, H. Konishi, X. Li, J. Phys. Chem. Lett. 2010, 1, 997.
- 103K. Wang, C. Han, J. Li, J. Qiu, J. Sunarso, S. Liu, Angew. Chem Int. Edit. 2021, 133, 2.
10.1002/ange.202014556 Google Scholar
- 104J. Wu, N. Qin, D. Bao, Nano Energy 2018, 45, 44.
- 105a) J. Shi, W. Zeng, Z. Dai, L. Wang, Q. Wang, S. Lin, Y. Xiong, S. Yang, S. Shang, W. Chen, L. Zhao, X. Ding, X. Tao, Y. Chai, Small Sci. 2020, 1, 2000011;
10.1002/smsc.202000011 Google Scholarb) Y. Wei, Y. Zhang, W. Geng, H. Su, M. Long, Appl Catal B 2019, 259, 118084.
- 106a) W. Tian, J. Qiu, N. Li, D. Chen, Q. Xu, H. Li, J. He, J. Lu, Nano Energy 2021, 86, 106036; b) A. Zhang, Z. Liu, B. Xie, J. Lu, K. Guo, S. Ke, L. Shu, H. Fan, Appl Catal B 2020, 279, 119353.
- 107G. Singh, M. Sharma, R. Vaish, Adv. Powder Technol. 2020, 31, 1771.
- 108Y. Wang, X. Wen, Y. Jia, M. Huang, F. Wang, X. Zhang, Y. Bai, G. Yuan, Y. Wang, Nat. Commun. 2020, 11, 1328.
- 109J. Wu, W. J. Mao, Z. Wu, X. L. Xu, H. L. You, A. X. Xue, Y. M. Jia, Nanoscale 2016, 8, 7343.
- 110R. Su, Z. Wang, L. Zhu, Y. Pan, D. Zhang, H. Wen, Z. D. Luo, L. Li, F. T. Li, M. Wu, L. He, P. Sharma, J. Seidel, Angew. Chem Int. Edit. 2021, 60, 16019.
- 111Z. H. Kang, E. Z. Lin, N. Qin, J. Wu, B. W. Yuan, D. H. Bao, Environ. Sci.: Nano 2021, 8, 1376.
- 112a) P. L. Wang, X. Y. Li, S. Y. Fan, X. Chen, M. C. Qin, D. Long, M. O. Tadé, S. M. Liu, Appl Catal B 2020, 279, 119340; b) D. M. Liu, J. T. Zhang, C. C. Jin, B. B. Chen, J. Hu, R. Zhu, F. Wang, Nano Energy 2022, 95, 106975; c) C.-C. Jin, J.-D. Ai, D.-M. Liu, L.-N. Tan, L. Cao, B.-L. Shen, X.-T. Qiu, L.-X. Zhang, J. Mater. Chem. A 2023, 11, 10360.
- 113a) X. Xue, R. Chen, H. Chen, Y. Hu, Q. Ding, Z. Liu, L. Ma, G. Zhu, W. Zhang, Q. Yu, J. Liu, J. Ma, Z. Jin, Nano Lett. 2018, 18, 7372; b) M. Ji, J. H. Kim, C. H. Ryu, Y. I. Lee, Nano Energy 2022, 95, 106993.
- 114J. M. Wu, Y. G. Sun, W. E. Chang, J. T. Lee, Nano Energy 2018, 46, 372.
- 115F. Cao, L. Yang, Y. Zhang, X. Zhao, H. Lu, J. Wang, J Clean Prod 2022, 380, 135002.
- 116a) C. Yu, J. He, M. Tan, Y. Hou, H. Zeng, C. Liu, H. Meng, Y. Su, L. Qiao, T. Lookman, Y. Bai, Adv. Funct. Mater. 2022, 32, 2209365; b) J. Wei, J. Xia, X. Liu, P. Ran, G. Zhang, C. Wang, X. Li, Appl Catal B 2023, 328, 122520.
- 117C. Yu, S. Lan, S. Cheng, L. Zeng, M. Zhu, J. Hazard. Mater. 2022, 424, 127440.
- 118Q. Zhou, N. J. Li, D. Y. Chen, Q. F. Xu, H. Li, J. H. He, J. M. Lu, Chem. Eng. Sci. 2022, 247, 116707.
- 119J. Lei, C. Wang, X. Feng, L. Ma, X. Liu, Y. Luo, L. Tan, S. Wu, C. Yang, Chem. Eng. J. 2022, 435, 134624.
- 120D. M. Liu, C. C. Jin, F. K. Shan, J. J. He, F. Wang, ACS Appl. Mater. Interfaces 2020, 12, 17443.
- 121C. C. Jin, D. M. Liu, J. Hu, Y. Wang, Q. Zhang, L. Lv, F. W. Zhuge, Nano Energy 2019, 59, 372.
- 122M. C. Junger, D. Feit, Sound, structures, and their interaction, MIT Press, Cambridge 1986.
- 123X. Wu, X. Wang, J. Li, G. Zhang, J. Mater. Chem. A 2017, 5, 23822.
- 124L. Mu, Y. Zhao, A. Li, S. Wang, Z. Wang, J. Yang, Y. Wang, T. Liu, R. Chen, J. Zhu, F. Fan, R. Li, C. Li, Energy Environ. Sci. 2016, 9, 2463.
- 125J. Ling, K. Wang, Z. Wang, H. Huang, G. Zhang, Ultrason. Sonochem. 2020, 61, 104819.
- 126M. B. Starr, X. Wang, Sci. Rep. 2013, 3, 2160.
- 127B. W. Yuan, J. Wu, N. Qin, E. Z. Lin, Z. H. Kang, D. H. Bao, Applied Mater. Today 2019, 17, 183.
- 128a) C. Cao, X. Xie, Y. Zeng, S. Shi, G. Wang, L. Yang, C.-Z. Wang, S. Lin, Nano Energy 2019, 61, 550; b) M. Zhang, S. Nie, T. Cheng, Y. Feng, C. Zhang, L. Zheng, L. Wu, W. Hao, Y. Ding, Nano Energy 2021, 90, 106635; c) J. F. Guan, Y. M. Jia, J. L. Cao, G. L. Yuan, S. H. Huang, X. Z. Cui, G. R. Li, Z. Wu, Ceram. Int. 2022, 48, 3695.
- 129C. Zhou, Q. W. Zhang, W. Cai, R. R. Yang, S. M. Chen, R. L. Gao, G. Chen, X. L. Deng, Z. H. Wang, X. Lei, C. L. Fu, J. C. Sun, Mat. Sci. Semicon. Proc. 2022, 150, 106950.
- 130a) L. Qifeng, M. Jingjun, M. Sharma, R. Vaish, J. Am. Ceram. Soc. 2019, 102, 5807; b) D. M. Liu, J. T. Zhang, L. N. Tan, C.-C. Jin, M. Li, B.-B. Chen, G. D. Zhang, Y. T. Zhang, F. Wang, J. Colloid Interf. Sci. 2023, 646, 159.
- 131X. X. Sun, R. C. Li, Z. W. Yang, N. Zhang, C. Wu, J. H. Li, Y. L. Chen, Q. Chen, J. Zhang, H. J. Yan, X. Lv, J. G. Wu, Appl Catal B 2022, 313, 121471.
- 132B. Yuan, J. Wu, N. Qin, E. Lin, D. Bao, ACS Appl. Nano Mater. 2018, 1, 5119.
- 133J. Karthik, L. W. Martin, Phys. Rev. B 2011, 84, 024102.
- 134Q. Zhao, H. Xiao, G. Huangfu, Z. Zheng, J. Wang, F. Wang, Y. Guo, Nano Energy 2021, 85, 106028.
- 135P. T. Thuy Phuong, Y. Zhang, N. Gathercole, H. Khanbareh, N. P. Hoang Duy, X. Zhou, D. Zhang, K. Zhou, S. Dunn, C. Bowen, iScience 2020, 23, 101095.
- 136Z. S. Chen, J. L. Zhuang, C. Liu, M. N. Chai, S. T. Zhang, K. X. Teng, T. T. Cao, Y. H. Zhang, Y. M. Hu, L. Zhao, Q. An, ChemElectroChem 2022, 9, 202200124.
- 137F. Meng, W. Ma, Y. Wang, Z. Zhu, Z. Chen, g. Lu, Environ. Sci.: Nano 2020, 7, 1704.
- 138W. Ma, B. H. Yao, Q. Yang, T. Zhang, K. C. Tian, W. Zhang, J. F. Niu, Y. Yu, Z. Chang, Y. Q. He, New J. Chem. 2022, 46, 4666.
- 139A. Z. Hao, X. E. Ning, Y. L. Cao, J. Xie, D. Z. Jia, Mater. Chem. Front. 2020, 4, 2096.
- 140J. Wu, N. Qin, E. Lin, B. Yuan, Z. Kang, D. Bao, Nanoscale 2019, 11, 21128.
- 141Z. H. Kang, E. Z. Lin, N. Qin, J. Wu, D. H. Bao, ACS Appl. Mater. Interfaces 2022, 14, 11375.
- 142H. Y. Zhang, J. D. Dai, C. M. Liu, Mater. Res. Express 2018, 6, 025025.
10.1088/2053-1591/aaed70 Google Scholar
- 143H. Lei, M. Wu, Y. Liu, F. Mo, J. Chen, S. Ji, Y. Zou, X. Dong, Chinese Chem. Lett. 2021, 32, 2317.
- 144T. T. Ren, W. R. Tian, Q. Shen, Z. T. Yuan, D. Y. Chen, N. J. Li, J. M. Lu, Nano Energy 2021, 90, 106527.
- 145W. Ma, B. H. Yao, W. Zhang, Y. Q. He, Y. Yu, J. F. Niu, C. Wang, Environ. Sci.: Nano 2018, 5, 2876.
- 146a) W. Qian, K. Zhao, D. Zhang, C. R. Bowen, Y. Wang, Y. Yang, ACS Appl. Mater. Interfaces 2019, 11, 27862; b) S. Xu, W. Qian, D. Zhang, X. Zhao, X. Zhang, C. Li, C. R. Bowen, Y. Yang, Nano Energy 2020, 77, 105305.
- 147W. Ma, B. H. Yao, W. Zhang, Y. Q. He, Y. Yu, J. F. Niu, Chem. Eng. J. 2021, 415, 129000.
- 148S. Li, X. Ning, P. Hao, Y. Cao, J. Xie, J. Hu, Z. Lu, A. Hao, Dyes Pigments 2022, 206, 110678.
- 149H.-Y. Lin, K. T. Le, P.-H. Chen, J. M. Wu, Appl Catal B 2022, 317, 121717.
- 150Z. Kang, N. Qin, E. Lin, J. Wu, B. Yuan, D. Bao, J Clean Prod 2020, 261, 121125.
- 151M. Pan, S. Liu, J. W. Chew, Nano Energy 2020, 68, 104366.
- 152Y. Q. Shao, C. C. Liu, H. R. Ma, J. J. Chen, C. L. Dong, D. J. Wang, Z. Y. Mao, Chem. Phys. Lett. 2022, 801, 139748.
- 153Z. Y. Li, Q. L. Zhang, L. K. Wang, J. Y. Yang, Y. Wu, Y. M. He, Ultrason. Sonochem. 2021, 78, 105729.
- 154A. Sharma, U. Bhardwaj, H. S. Kushwaha, Mater. Adv. 2021, 2, 2649.
- 155H. Lei, M. Wu, F. Mo, S. Ji, X. Dong, Y. Jia, F. Wang, Z. Wu, Environ. Sci.: Nano 2021, 8, 1398.
- 156P. F. Shen, P. Yin, Y. T. Zou, M. Li, N. Q. Zhang, D. Tan, H. Y. Zhao, Q. J. Li, R. S. Yang, B. Zou, B. B. Liu, Adv. Mater. 2023, 35, 2212172.
- 157S. Lan, C. Yu, E. Wu, M. Zhu, D. D. Dionysiou, ACS ES&T Eng. 2021, 2, 101.
10.1021/acsestengg.1c00296 Google Scholar
- 158B. J. Huo, F. Q. Meng, J. W. Yang, Y. L. Wang, J. G. Qi, W. Ma, Z. C. Wang, J. X. Wang, Z. H. Wang, Chem. Eng. J. 2022, 436, 135173.
- 159W. T. Yein, Q. Wang, Y. Li, X. Wu, Catal. Commun. 2019, 125, 61.
- 160C. Hu, F. Chen, Y. Wang, N. Tian, T. Ma, Y. Zhang, H. Huang, Adv. Mater. 2021, 33, 2101751.
- 161R. Lei, F. Gao, J. Yuan, C. Jiang, X. Fu, W. Feng, P. Liu, Appl. Surf. Sci. 2022, 576, 151851.
- 162Y. T. Lin, S. N. Lai, J. M. Wu, Adv. Mater. 2020, 32, 2002875.
- 163S. L. Guo, S. N. Lai, J. M. Wu, ACS Nano 2021, 15, 16106.
- 164T. F. Jaramillo, K. P. Jorgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100.
- 165Y. Su, L. Zhang, W. Wang, X. Li, Y. Zhang, D. Shao, J. Mater. Chem. A 2018, 6, 11909.
- 166S. G. Yuan, W. F. Io, J. F. Mao, Y. C. Chen, X. Luo, J. H. Hao, ACS Appl. Nano Mater. 2020, 3, 11979.
- 167S. Masimukku, D.-L. Tsai, Y.-T. Lin, I. L. Chang, J.-J. Wu, Appl. Surf. Sci. 2023, 614, 156147.
- 168W. Liu, P. Fu, Y. Zhang, H. Xu, H. Wang, M. Xing, Proc. Natl. Acad. Sci. USA 2023, 120, e2218813120.
- 169L. Xiao, X. Xu, Y. Jia, G. Hu, J. Hu, B. Yuan, Y. Yu, G. Zou, Nat. Commun. 2021, 12, 318.
- 170a) Y. Zhang, P. T. Thuy Phuong, N. P. Hoang Duy, E. Roake, H. Khanbareh, M. Hopkins, X. Zhou, D. Zhang, K. Zhou, C. Bowen, Nanoscale Adv 2021, 3, 1362; b) P. T. T. Phuong, D.-V. N. Vo, N. P. H. Duy, H. Pearce, Z. M. Tsikriteas, E. Roake, C. Bowen, H. Khanbareh, Nano Energy 2022, 95, 107032; c) J. Ma, S. Jing, Y. Wang, X. Liu, L.-Y. Gan, C. Wang, J.-Y. Dai, X. Han, X. Zhou, Adv. Energy Mater. 2022, 12, 2200253.
- 171W. Feng, J. Yuan, L. Zhang, W. Hu, Z. Wu, X. Wang, X. Huang, P. Liu, S. Zhang, Appl Catal B 2020, 277, 119250.
- 172T. Xu, J. Hur, P. Niu, S. Wang, S. Lee, S.-E. Chun, L. Li, Green Energy Environ. 2022, https://doi.org/10.1016/j.gee.2022.10.004.
10.1016/j.gee.2022.10.004 Google Scholar
- 173D. Shao, L. Zhang, S. Sun, W. Wang, ChemSusChem 2018, 11, 527.
- 174P. Hao, Y. Cao, X. Ning, R. Chen, J. Xie, J. Hu, Z. Lu, A. Hao, J. Colloid Interf. Sci. 2023, 639, 343.
- 175Q. T. Hoang, K. A. Huynh, T. G. N. Cao, J. H. Kang, D. X. Nghia, V. Ravichandran, H. C. Kang, M. Lee, J. E. Kim, Y. T. Ko, T. I. Lee, M. S. Shim, Adv. Mater. 2023, 35, 2300437.
- 176S. D. Wang, C. L. Chen, J. Wang, C.-B.-W. Li, J. L. Zhou, Y.-X. Liu, Y.-Q. Jiang, L. F. Zhu, C. Li, W. Gong, W. Guo, X. D. Tang, F.-Z. Yao, K. Wang, Adv. Funct. Mater. 2022, 32, 2208128.
- 177S. Masimukku, Y.-C. Hu, Z.-H. Lin, S.-W. Chan, T.-M. Chou, J. M. Wu, Nano Energy 2018, 46, 338.
- 178T.-M. Chou, S.-W. Chan, Y.-J. Lin, P.-K. Yang, C.-C. Liu, Y.-J. Lin, J.-M. Wu, J.-T. Lee, Z.-H. Lin, Nano Energy 2019, 57, 14.