Fabrication of Optical Fourier Surface by Multiple-Frequency Vibration Cutting for Structural True Coloration
Peiyuan Ding
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorJianfu Zhang
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorPingfa Feng
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518029 China
Search for more papers by this authorXiangyu Zhang
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorZhongpeng Zheng
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Jianjian Wang
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]
Search for more papers by this authorPeiyuan Ding
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorJianfu Zhang
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorPingfa Feng
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518029 China
Search for more papers by this authorXiangyu Zhang
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorZhongpeng Zheng
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Jianjian Wang
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Optical Fourier surface is a unique patterned optical surface containing the precise sum of sinusoidal waves, each with a well-defined spatial frequency and amplitude. It can manipulate the desired diffracted light field through its Fourier transform, which brings a straightforward mathematical method for designing complex diffractive optics. However, the fabrication techniques typically have the drawbacks of low efficiency, limiting the large-scale industrial application of optical Fourier surfaces. This study presents a powerful approach, the multi-frequency vibration cutting (MFVC), to enable the high-efficiency fabrication of optical Fourier surfaces. A specific optical Fourier surface consisting of arbitrary frequency components of linear gratings has been fabricated on metallic surfaces using MFVC. Due to the capacity of multicomponent gratings in coupling red, green, and blue lights at the same incident angle, the RGB true color has been prepared. The additive and subtractive principles of mixing the three primary colors are demonstrated. The former relies on the light dispersion induced by grating diffraction, while the latter is based on the light absorption induced by the subwavelength grating-coupled surface plasma polarization (SPP). The experimental results of authentic structural true color on the aluminum surface verify the efficacy of MFVC in the fabrication of optical Fourier surfaces.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1B. R. Wasik, S. F. Liew, D. A. Lilien, A. J. Dinwiddie, H. Noh, H. Cao, A. Monteiro, Proc. Natl. Acad. Sci. USA 2014, 111, 12109.
- 2Y. Fu, C. A. Tippets, E. U. Donev, R. Lopez, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2016, 8, 758.
- 3R. T. Lee, G. S. Smith, Appl. Opt. 2009, 48, 4177.
- 4L. Feng, Y. Zhang, M. Li, Y. Zheng, W. Shen, L. Jiang, Langmuir 2010, 26, 14885.
- 5F. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, J. Zi, Opt. Express 2009, 17, 16183.
- 6E. Shevtsova, C. Hansson, D. H. Janzen, J. Kjærandsen, Proc. Natl. Acad. Sci. USA 2011, 108, 668.
- 7Y. Wang, H. Cui, Q. Zhao, X. Du, Matter 2019, 1, 626.
- 8H. S. Lee, T. S. Shim, H. Hwang, S.-M. Yang, S.-H. Kim, Chem. Mater. 2013, 25, 2684.
- 9W. Hong, Z. Yuan, X. Chen, Small 2020, 16, 1907626.
- 10M. Qin, Y.u Huang, Y. Li, M. Su, B. Chen, H. Sun, P. Yong, C. Ye, F. Li, Y. Song, Angew. Chem., Int. Ed. 2016, 55, 6911.
- 11J.u H. Lee, B. Fan, T. D. Samdin, D. A. Monteiro, M. S. Desai, O. Scheideler, H.-E. Jin, S. Kim, S.-W. Lee, ACS Nano 2017, 11, 3632.
- 12Y.u Wang, Y. Yu, J. Guo, Z. Zhang, X. Zhang, Y. Zhao, Adv. Funct. Mater. 2020, 30, 2000151.
- 13Y. Liu, X. Li, J. Huang, Z. Wang, X. Zhao, B. Zhao, L. Jiang, ACS Appl. Mater. Interfaces 2022, 14, 16911.
- 14G. Bae, M. Seo, S. Lee, D. Bae, M. Lee, Adv. Mater. Technol. 2021, 6, 2100479.
- 15O. Sato, S. Kubo, Z.-Z.e Gu, Acc. Chem. Res. 2009, 42, 1.
- 16N. Lassaline, R. Brechbühler, S. J. W. Vonk, K. Ridderbeek, M. Spieser, S. Bisig, B. Le Feber, F. T. Rabouw, D. J. Norris, Nature 2020, 582, 506.
- 17J. Kim, D. C. Joy, S.-Y. Lee, Microelectron. Eng. 2007, 84, 2859.
- 18H. Wang, W. Zhang, D. Ladika, H. Yu, D. Gailevičius, H. Wang, C.-F. Pan, P. N. S. Nair, Y. Ke, T. Mori, J. Y. E.n Chan, Q. Ruan, M. Farsari, M. Malinauskas, S. Juodkazis, M. Gu, J. K. W. Yang, Adv. Funct. Mater. 2023, 2214211.
10.1002/adfm.202214211 Google Scholar
- 19H. Rekola, A. Berdin, C. Fedele, M. Virkki, A. Priimagi, Sci. Rep. 2020, 10, 19642.
- 20Y. Sin Tan, H. Wang, H. Wang, C. Pan, J. K. W. Yang, Photonics Research 2023, 11, B103.
- 21K. T. P. Lim, H. Liu, Y. Liu, J. K. W. Yang, Nat. Commun. 2019, 10, 25.
- 22J. Geng, W. Yan, L. Shi, M. Qiu, Light: Sci. Appl. 2022, 11, 189.
- 23E. Albisetti, A. Calò, A. Zanut, X. Zheng, G. M. De Peppo, E. Riedo, Nat Rev Methods Primers 2022, 2, 32.
- 24Y.u K. Ryu Cho, C. D. Rawlings, H. Wolf, M. Spieser, S. Bisig, S. Reidt, M. Sousa, S. R. Khanal, T. D. B. Jacobs, A. W. Knoll, ACS Nano 2017, 11, 11890.
- 25T. Das, J. D. Smith, M. H. Uddin, R. R. Dagastine, ACS Appl. Mater. Interfaces 2022, 14, 19878.
- 26G.I D. Kim, B. G. Loh, Int J Adv Manuf Technol 2010, 49, 961.
- 27J. Zhang, N. Suzuki, Y. Wang, E. Shamoto, Precision Engineering 2015, 39, 86.
- 28W. Gao, T. Araki, S. Kiyono, Y. Okazaki, M. Yamanaka, Precision Engineering 2003, 27, 289.
- 29S. Xu, K. Shimada, M. Mizutani, T. Kuriyagawa, Int J Mach Tools Manuf 2014, 86, 12.
- 30J. Wang, Y. Wang, J. Zhang, V. Schulze, P. Guo, Opt. Express 2022, 30, 8829.
- 31J. Wang, Y. Wang, J. Zhang, Y. Yang, P. Guo, Light: Advanced Manufacturing 2021, 2, 434.
- 32M. Song, L. Feng, P. Huo, M. Liu, C. Huang, F. Yan, Y. Lu, T. Xu, Nat. Nanotechnol. 2022, 17, 1.
- 33J. Y. E.n Chan, Q. Ruan, H. Wang, H. Wang, H. Liu, Z. Yan, C.-W. Qiu, J. K. W. Yang, Nano Lett. 2022, 22, 8189.
- 34Y. Meng, J. Qiu, S. Wu, B. Ju, S. Zhang, B. Tang, ACS Appl. Mater. Interfaces 2018, 10, 38459.
- 35S. Daqiqeh Rezaei, Z. Dong, J. You En Chan, J. Trisno, R. J. H. Ng, Q. Ruan, C.-W. Qiu, N. A. Mortensen, J. K. W. Yang, ACS Photonics 2020, 8, 18.
- 36D. M. Sullivan, Electromagnetic simulation using the FDTD method, John Wiley & Sons, Hoboken, NJ 2013.
10.1002/9781118646700 Google Scholar
- 37D. Malacara, Color vision and colorimetry: theory and applications, WA: Spie, Bellingham, WA 2011.
- 38G. Song, J. Zhao, X. Zhou, J. Deabreu-Garcia, IEEE ASME Trans Mechatron 2005, 10, 198.
- 39M. Rakotondrabe, I. A. Ivan, S. Khadraoui, P. Lutz, N. Chaillet, IEEE ASME Trans Mechatron 2014, 20, 519.
- 40M. Kucera, T. Manzaneque, J. L. Sánchez-Rojas, A. Bittner, U. Schmid, J. Micromech. Microeng. 2013, 23, 085009.
- 41A. J. Fleming, K. K. Leang, Sens. Actuators, A 2010, 161, 256.
- 42Y. Li, J. Onoda, K. Minesugi, Acta Astronaut. 2002, 50, 335.
- 43J. Wang, W.-H. Liao, P. Guo, Int J Mech Sci 2020, 170, 105347.
10.1016/j.ijmecsci.2019.105347 Google Scholar