Ceo2/Cus Nanoplates Electroreduce Co2 to Ethanol with Stabilized Cu+ Species
Zi Yang
Stat Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorDeguang Ji
Stat Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorZhi Li
Stat Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorZidong He
Stat Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorYang Hu
Stat Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorJie Yin
Stat Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorYichao Hou
Stat Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Pinxian Xi
Stat Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030 China
E-mail: [email protected]
Search for more papers by this authorChun-Hua Yan
Stat Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorZi Yang
Stat Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorDeguang Ji
Stat Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorZhi Li
Stat Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorZidong He
Stat Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorYang Hu
Stat Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorJie Yin
Stat Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorYichao Hou
Stat Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Pinxian Xi
Stat Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030 China
E-mail: [email protected]
Search for more papers by this authorChun-Hua Yan
Stat Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorAbstract
Copper-based electrocatalysts effectively produce multicarbon (C2+) compounds during the electrochemical CO2 reduction (CO2RR). However, big challenges still remain because of the chemically unstable active sites. Here, cerium is used as a self-sacrificing agent to stabilize the Cu+ of CuS, due to the facile Ce3+/Ce4+ redox. CeO2-modified CuS nanoplates achieve high ethanol selectivity, with FE up to 54% and FEC2+ ≈ 75% in a flow cell. Moreover, in situ Raman spectroscopy and in situ Fourier-transform infrared spectroscopy indicate that the stable Cu+ species promote CC coupling step under CO2RR. Density functional theory calculations further reveal that the stronger *CO adsorption and lower CC coupling energy, which is conducive to the selective generation of ethanol products. This work provides a facile strategy to convert CO2 into ethanol by retaining Cu+ species.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202303099-sup-0001-SuppMat.pdf2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Meinshausen, N. Meinshausen, W. Hare, S. C. B. Raper, K. Frieler, R. Knutti, D. J. Frame, M. R. Allen, Nature 2009, 458, 1158.
- 2D. T. Whipple, P. J. A. Kenis, J. Phys. Chem. Lett. 2010, 1, 3451.
- 3K. P. Kuhl, E. R. Cave, D. N. Abram, T. F. Jaramillo, Energy Environ. Sci. 2012, 5, 7050.
- 4C. W. Lee, K. D. Yang, D.-H. Nam, J. H. Jang, N. H. Cho, S. W. Im, K. T. Nam, Adv. Mater. 2018, 30, 1704717.
- 5Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta 1994, 39, 1833.
- 6Q. Lei, H. Zhu, K. P. Song, N. N. Wei, L. M. Liu, D. L. Zhang, J. Yin, X. L. Dong, K. L. Yao, N. Wang, X. H. Li, B. Davaasuren, J. J. Wang, Y. Han, J. Am. Chem. Soc. 2020, 142, 4213.
- 7D. Gao, R. M. Arán-Ais, H. S. Jeon, B. R. Cuenya, Nat. Catal. 2019, 2, 198.
- 8P. Grosse, D. Gao, F. Scholten, I. Sinev, H. Mistry, B. R. Cuenya, Angew. Chem., Int. Ed. 2018, 57, 6192.
- 9C. W. Li, J. Ciston, M. W. Kanan, Nature 2014, 508, 504.
- 10J. Wang, H. Y. Tan, Y. Zhu, H. Chu, H. M. Chen, Angew. Chem., Int. Ed. 2021, 60, 17254.
- 11B. Zhao, F. Chen, C. Cheng, L. Li, C. Liu, B. Zhang, Adv. Energy Mater. 2023, 2204346.
10.1002/aenm.202204346 Google Scholar
- 12C. Guo, Y. Guo, Y. Shi, X. Lan, Y. Wang, Y. Yu, B. Zhang, Angew. Chem., Int. Ed. 2022, 32, 61.
- 13J. Liu, Z. Zhao, C. Xu, J. Liu, Chin. J. Catal. 2019, 40, 1438.
- 14M. Konsolakis, Appl. Catal. B 2016, 198, 49.
- 15Z. Zhao, X. Li, J. Wang, X. Lv, H. B. Wu, J. CO2 Util. 2021, 54, 101741.
- 16S. Chu, X. Yan, C. Choi, S. Hong, A. W. Robertson, J. Masa, B. Han, Y. Jung, Z. Sun, Green Chem. 2020, 22, 6540.
- 17X. Zhou, J. Shan, L. Chen, B. Y. Xia, T. Ling, J. Duan, Y. Jiao, Y. Zheng, S.-Z. Qiao, J. Am. Chem. Soc. 2022, 144, 2079.
- 18X. C. Liu, S. Y. Zhao, X. Sun, L. Deng, X. Zou, Y. Hu, Y. Wang, C. Chu, J. Li, J. Wu, F. S. Ke, P. M. Ajayan, Sci. Adv. 2020, 6, 4092.
- 19B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537.
- 20H. Fujiwara, H. Hosokawa, K. Murakoshi, Y. Wada, S. Yanagida, J. Phys. Chem. B 1997, 101, 8270.
- 21C. Peng, G. Luo, J. Zhang, J. Zhang, M. Chen, Z. Wang, T. K. Sham, L. Zhang, Y. Li, G. Zheng, Nat. Commun. 2021, 12, 1580.
- 22Q. Lei, H. Zhu, K. Song, N. Wei, L. Liu, D. Zhang, J. Yin, X. Dong, K. Yao, N. Wang, J. Am. Chem. Soc. 2020, 142, 4213.
- 23G. Vile, S. Colussi, F. Krumeich, A. Trovarelli, J. Perez-Ramirez, Angew. Chem., Int. Ed. 2014, 53, 12069.
- 24L. Vivier, D. Duprez, ChemSusChem 2010, 3, 654.
- 25W.-Z. Yu, W.-W. Wang, S.-Q. Li, X.-P. Fu, X. Wang, K. Wu, R. Si, C. Ma, C.-J. Jia, C.-H. Yan, J. Am. Chem. Soc. 2019, 141, 17548.
- 26T. Shinagawa, G. O. Larrazábal, A. J. Martín, F. Krumeich, J. Pérez-Ramírez, ACS Catal. 2018, 8, 837.
- 27D. Gao, I. Sinev, F. Scholten, R. M. Aran-Ais, N. J. Divins, K. Kvashnina, J. Timoshenko, B. R. Cuenya, Angew. Chem., Int. Ed. 2019, 58, 17047.
- 28T.-T. Zhuang, Z.-Q. Liang, A. Seifitokaldani, Y. Li, P. De Luna, T. Burdyny, F. Che, F. Meng, Y. Min, R. Quintero-Bermudez, C. T. Dinh, Y. Pang, M. Zhong, B. Zhang, J. Li, P. N. Chen, X. L. Zheng, H. Liang, W.-N. Ge, B. J. Ye, D. Sinton, S.-H. Yu, E. H. Sargent, Nat. Catal. 2018, 1, 421.
- 29Z.-Q. Liang, T.-T. Zhuang, A. Seifitokaldani, J. Li, C. W. Huang, C. S. Tan, Y. Li, P. De Luna, C. T. Dinh, Y. F. Hu, Q. F. Xiao, P. L. Hsieh, Y. H. Wang, F. W. Li, R. Quintero-Bermudez, Y. S. Zhou, P. N. Chen, Y. Pang, S. C. Lo, L. J. Chen, H. Tan, Z. Xu, S. Zhao, D. Sinton, E. H. Sargent, Nat. Commun. 2018, 9, 3828.
- 30P. Burroughs, A. Hamnett, A. F. Orchard, G. Thornton, J. Chem. Soc., Dalton Trans. 1976, 17, 1686.
- 31Z. Sun, X. Wang, Z. Liu, H. Zhang, P. Yu, L. Mao, Langmuir 2010, 26, 12383.
- 32A. J. Bard, L. R. Faulkner, Russ. J. Electrochem. 2002, 38, 1364.
10.1023/A:1021637209564 Google Scholar
- 33C. H. He, S. J. Chen, R. Long, L. Song, Y. J. Xiong, Sci. China Chem. 2020, 63, 1721.
- 34X. L. Zheng, P. De Luna, F. P. García de Arquer, B. Zhang, N. Becknell, M. B. Ross, Y. F. Li, M. N. Banis, Y. Z. Li, M. Liu, Joule 2017, 1, 794.
- 35G. Cui, Y. Zeng, J. Wu, Y. Guo, X. Gu, X. W. Lou, Adv. Sci. 2022, 9, 2106067.
- 36S. Y. Yu, J. C. Liu, Y. Zhou, R. D. Webster, X. L. Yan, ACS Sustainable Chem. Eng. 2017, 5, 1347.
- 37W. Wang, Y. B. Zhu, Q. Wen, Y. Wang, J. Xia, C. Li, M. W. Chen, Y. Liu, H. Li, H. A. Wu, T. Zhai, Adv. Mater. 2019, 31, 1900528.
- 38X. Chen, J. Chen, N. M. Alghoraibi, D. A. Henckel, R. Zhang, U. O. Nwabara, K. E. Madsen, P. J. A. Kenis, S. C. Zimmerman, A. A. Gewirth, Nat. Catal. 2021, 4, 20.
- 39A. D. Handoko, K. W. Chan, B. S. Yeo, ACS Energy Lett. 2017, 2, 2103.
- 40Y. Katayama, F. Nattino, L. Giordano, J. Hwang, R. R. Rao, O. Andreussi, N. Marzari, Y. Shao-Horn, J. Phys. Chem. C 2019, 123, 5951.
- 41G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 42G. Kresse, J. Furthmüller, Comp. Mater. Sci. 1996, 6, 15.
- 43J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 44J. P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 1996, 105, 9982.
- 45S. Grimme, J. Comput. Chem. 2006, 27, 1787.