Exploiting High-Voltage Stability of Dual-Ion Aqueous Electrolyte Reinforced by Incorporation of Fiberglass into Zwitterionic Hydrogel Electrolyte
Orynbay Zhanadilov
Hybrid Materials Research Center, Department of Nanotechnology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Seoul, 05006 South Korea
Search for more papers by this authorHee Jae Kim
Hybrid Materials Research Center, Department of Nanotechnology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Seoul, 05006 South Korea
Search for more papers by this authorHou-Jen Lai
Computational and Theoretical Chemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106 Taiwan
Search for more papers by this authorJyh-Chiang Jiang
Computational and Theoretical Chemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106 Taiwan
Search for more papers by this authorAishuak Konarov
Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000 Kazakhstan
Search for more papers by this authorAlmagul Mentbayeva
Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000 Kazakhstan
Search for more papers by this authorZhumabay Bakenov
Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000 Kazakhstan
Search for more papers by this authorKee-Sun Sohn
Hybrid Materials Research Center, Department of Nanotechnology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Seoul, 05006 South Korea
Search for more papers by this authorCorresponding Author
Payam Kaghazchi
Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Materials Synthesis and Processing (IEK-1), 52425 Jülich, Germany
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Seung-Taek Myung
Hybrid Materials Research Center, Department of Nanotechnology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Seoul, 05006 South Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorOrynbay Zhanadilov
Hybrid Materials Research Center, Department of Nanotechnology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Seoul, 05006 South Korea
Search for more papers by this authorHee Jae Kim
Hybrid Materials Research Center, Department of Nanotechnology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Seoul, 05006 South Korea
Search for more papers by this authorHou-Jen Lai
Computational and Theoretical Chemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106 Taiwan
Search for more papers by this authorJyh-Chiang Jiang
Computational and Theoretical Chemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106 Taiwan
Search for more papers by this authorAishuak Konarov
Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000 Kazakhstan
Search for more papers by this authorAlmagul Mentbayeva
Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000 Kazakhstan
Search for more papers by this authorZhumabay Bakenov
Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000 Kazakhstan
Search for more papers by this authorKee-Sun Sohn
Hybrid Materials Research Center, Department of Nanotechnology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Seoul, 05006 South Korea
Search for more papers by this authorCorresponding Author
Payam Kaghazchi
Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Materials Synthesis and Processing (IEK-1), 52425 Jülich, Germany
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Seung-Taek Myung
Hybrid Materials Research Center, Department of Nanotechnology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Seoul, 05006 South Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Rechargeable zinc aqueous batteries are key alternatives for replacing toxic, flammable, and expensive lithium-ion batteries in grid energy storage systems. However, these systems possess critical weaknesses, including the short electrochemical stability window of water and intrinsic fast zinc dendrite growth. Hydrogel electrolytes provide a possible solution, especially cross-linked zwitterionic polymers that possess strong water retention ability and high ionic conductivity. Herein, an in situ prepared fiberglass-incorporated dual-ion zwitterionic hydrogel electrolyte with an ionic conductivity of 24.32 mS cm−1, electrochemical stability window up to 2.56 V, and high thermal stability is presented. By incorporating this hydrogel electrolyte of zinc and lithium triflate salts, a zinc//LiMn0.6Fe0.4PO4 pouch cell delivers a reversible capacity of 130 mAh g−1 in the range of 1.0–2.2 V at 0.1C, and the test at 2C provides an initial capacity of 82.4 mAh g−1 with 71.8% capacity retention after 1000 cycles with a coulombic efficiency of 97%. Additionally, the pouch cell is fire resistant and remains safe after cutting and piercing.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202302973-sup-0001-SuppMat.pdf1.2 MB | Supporting Information |
smll202302973-sup-0002-MovieS1.mp410.3 MB | Supplemental Movie 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561.
- 2N. Tolganbek, Y. Yerkinbekova, S. Kalybekkyzy, Z. Bakenov, A. Mentbayeva, J. Alloys Compd. 2021, 882, 160774.
- 3L. Jiang, D. Dong, Y.-C. Lu, Nano Res. Energy 2022, 1, e9120003.
- 4J.-L. Yang, X.-X. Zhao, W.-H. Li, H.-J. Liang, Z.-Y. Gu, Y. Liu, M. Du, X.-L. Wu, eScience 2022, 2, 95.
- 5X. Ji, eScience 2021, 1, 99.
- 6M. S. Ziegler, J. E. Trancik, Energy Environ. Sci. 2021, 14, 1635.
- 7L. Bravo Diaz, X. He, Z. Hu, F. Restuccia, M. Marinescu, J. V. Barreras, Y. Patel, G. Offer, G. Rein, J. Electrochem. Soc. 2020, 167, 090559.
- 8J. U. Choi, N. Voronina, Y. K. Sun, S. T. Myung, Adv. Energy Mater. 2020, 10, 2002027.
- 9P. V. Chombo, Y. Laoonual, J. Power Sources 2020, 478, 228649.
- 10A. Konarov, N. Voronina, J. H. Jo, Z. Bakenov, Y. K. Sun, S. T. Myung, ACS Energy Lett. 2018, 3, 2620.
- 11N. Yesibolati, N. Umirov, A. Koishybay, M. Omarova, I. Kurmanbayeva, Y. Zhang, Y. Zhao, Z. Bakenov, Electrochim. Acta 2014, 152, 505.
- 12S. Lorca, F. Santos, A. J. Fernández Romero, Polymers 2020, 12, 2812.
- 13I. Kurmanbayeva, L. Rakhymbay, K. Korzhynbayeva, A. Adi, D. Batyrbekuly, A. Mentbayeva, Z. Bakenov, Front. Energy Res. 2020, 8, 599009.
10.3389/fenrg.2020.599009 Google Scholar
- 14G. Fang, J. Zhou, A. Pan, S. Liang, ACS Energy Lett. 2018, 3, 2480.
- 15D. Chao, W. Zhou, F. Xie, C. Ye, H. Li, M. Jaroniec, S. Z. Qiao, Sci. Adv. 2020, 6, eaba4098.
- 16P. Kulkarni, D. Ghosh, R. G. Balakrishna, Sustainable Energy Fuels 2021, 5, 1619.
- 17N. Sagawa, T. Shikata, Phys. Chem. Chem. Phys. 2014, 16, 13262.
- 18T. U. Rehman, S. Bibi, M. Khan, I. Ali, L. A. Shah, A. Khan, M. Ateeq, RSC Adv. 2019, 9, 40051.
- 19A. Erfani, J. Seaberg, C. P. Aichele, J. D. Ramsey, Biomacromolecules 2020, 21, 2557.
- 20H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu, Z. Pei, Q. Xue, Z. Wang, Z. Liu, Z. Tang, Y. Wang, F. Kang, B. Li, C. Zhi, Energy Environ. Sci. 2018, 11, 941.
- 21Q. He, G. Fang, Z. Chang, Y. Zhang, S. Zhou, M. Zhou, S. Chai, Y. Zhong, G. Cao, S. Liang, A. Pan, Nano-Micro Lett. 2022, 14, 93.
- 22Q. Fu, S. Hao, L. Meng, F. Xu, J. Yang, ACS Nano 2021, 15, 18469.
- 23Z. Liu, D. Wang, Z. Tang, G. Liang, Q. Yang, H. Li, L. Ma, F. Mo, C. Zhi, Energy Storage Mater. 2019, 23, 636.
- 24M. Zhu, X. Wang, H. Tang, J. Wang, Q. Hao, L. Liu, Y. Li, K. Zhang, O. G. Schmidt, Adv. Funct. Mater. 2020, 30, 1907218.
- 25F. Mo, Z. Chen, G. Liang, D. Wang, Y. Zhao, H. Li, B. Dong, C. Zhi, Adv. Energy Mater. 2020, 10, 2000035.
- 26S. E. Hyeon, J. Y. Seo, J. W. Bae, W. J. Kim, C. H. Chung, Electrochim. Acta 2019, 319, 672.
- 27Q. Hu, S. Cui, K. Sun, X. Shi, M. Zhang, H. Peng, G. Ma, J. Energy Storage 2022, 50, 104231.
- 28S. Wu, H. Zheng, R. Tian, Z. Hei, H. Liu, H. Duan, J. Power Sources 2020, 472, 228627.
- 29L. Yu, Y. Zhang, J. Wang, H. Gan, S. Li, X. Xie, Z. Xue, Macromolecules 2021, 54, 874.
- 30S. Ji, J. Qin, S. Yang, P. Shen, Y. Hu, K. Yang, H. Luo, J. Xu, Energy Storage Mater. 2023, 55, 236.
- 31K. Leng, G. Li, J. Guo, X. Zhang, A. Wang, X. Liu, J. Luo, Adv. Funct. Mater. 2020, 30, 2001317
- 32M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao, C. P. Wong, Adv. Mater. 2021, 33, 2007559.
- 33Y. Zuo, K. Wang, P. Pei, M. Wei, X. Liu, Y. Xiao, P. Zhang, Mater. Today Energy 2021, 20, 100692.
- 34H. J. Kim, S. Kim, K. Heo, J. H. Lim, H. Yashiro, S. T. Myung, Adv. Energy Mater. 2022, 13, 2203189.
- 35Y. Chu, L. Ren, Z. Hu, C. Huang, J. Luo, Green Energy Environ. 2022, In Press, https://doi.org/10.1016/j.gee.2022.04.008.
10.1016/j.gee.2022.04.008 Google Scholar
- 36N. A. Thieu, W. Li, X. Chen, S. Hu, H. Tian, H. N. N. Tran, W. Li, D. M. Reed, X. Li, X. Liu, Batteries 2023, 9, 41.
- 37P. Lin, J. Cong, J. Li, M. Zhang, P. Lai, J. Zeng, Y. Yang, J. Zhao, Energy Storage Mater. 2022, 49, 172.
- 38V. Yufit, F. Tariq, D. S. Eastwood, M. Biton, B. Wu, P. D. Lee, N. P. Brandon, Joule 2019, 3, 485.
- 39C. Yuan, X. Zhong, P. Tian, Z. Wang, G. Gao, L. Duan, C. Wang, F. Shi, ACS Appl. Energy Mater. 2022, 5, 7530.
- 40M. Chen, W. Zhou, A. Wang, A. Huang, J. Chen, J. Xu, C. P. Wong, J. Mater. Chem. A 2020, 8, 6828.
- 41Y. Hao, D. Feng, L. Hou, T. Li, Y. Jiao, P. Wu, Adv. Sci. 2022, 9, 2104832.
- 42H. Dong, J. Li, S. Zhao, Y. Jiao, J. Chen, Y. Tan, D. J. L. Brett, G. He, I. P. Parkin, ACS Appl. Mater. Interfaces 2021, 13, 745.
- 43Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, K. Hirao, J. Chem. Phys. 2004, 120, 8425.
- 44A. D. McLean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639.
- 45R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
- 46S. Miertus̃, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55, 117.
- 47S. Miertus̃, J. Tomasi, Chem. Phys. 1982, 65, 239.
- 48J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.