Si/Organic Integrated Narrowband Near-Infrared Photodetector
Zhuhua Xu
Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055 China
Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorChuying Sun
Department of Mechanical Engineering, University of Hong Kong, Hong Kong, 999077 China
Search for more papers by this authorSiyi Min
Department of Mechanical Engineering, University of Hong Kong, Hong Kong, 999077 China
Search for more papers by this authorZilong Ye
Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorCong Zhao
Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055 China
Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorJingzhou Li
Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024 China
Search for more papers by this authorZhenghao Liu
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorYoudi Liu
Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802 USA
Search for more papers by this authorCorresponding Author
Wen-Di Li
Department of Mechanical Engineering, University of Hong Kong, Hong Kong, 999077 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorMan-Chung Tang
Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorQinghua Song
Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
H.Y. Fu
Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorFeiyu Kang
Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055 China
Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorJiangyu Li
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorYang Shen
State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Cunjiang Yu
Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802 USA
Department of Biomedical Engineering, Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, PA, 16802 USA
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guodan Wei
Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055 China
Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorZhuhua Xu
Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055 China
Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorChuying Sun
Department of Mechanical Engineering, University of Hong Kong, Hong Kong, 999077 China
Search for more papers by this authorSiyi Min
Department of Mechanical Engineering, University of Hong Kong, Hong Kong, 999077 China
Search for more papers by this authorZilong Ye
Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorCong Zhao
Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055 China
Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorJingzhou Li
Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024 China
Search for more papers by this authorZhenghao Liu
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorYoudi Liu
Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802 USA
Search for more papers by this authorCorresponding Author
Wen-Di Li
Department of Mechanical Engineering, University of Hong Kong, Hong Kong, 999077 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorMan-Chung Tang
Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorQinghua Song
Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
H.Y. Fu
Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorFeiyu Kang
Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055 China
Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorJiangyu Li
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorYang Shen
State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Cunjiang Yu
Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802 USA
Department of Biomedical Engineering, Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, PA, 16802 USA
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guodan Wei
Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055 China
Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Spectrally selective narrowband photodetection is critical for near-infrared (NIR) imaging applications, such as for communicationand night-vision utilities. It is a long-standing challenge for detectors based on silicon, to achieve narrowband photodetection without integrating any optical filters. Here, this work demonstrates a NIR nanograting Si/organic (PBDBT-DTBT:BTP-4F) heterojunction photodetector (PD), which for the first time obtains the full-width-at-half-maximum (FWHM) of only 26 nm and fast response of 74 µs at 895 nm. The response peak can be successfully tailored from 895 to 977 nm. The sharp and narrow response NIR peak is inherently attributed to the coherent overlapping between the NIR transmission spectrum of organic layer and diffraction enhanced absorption peak of patterned nanograting Si substrates. The finite difference time domain (FDTD) physics calculation confirms the resonant enhancement peaks, which is well consistent with the experiment results. Meanwhile, the relative characterization indicates that the introduction of the organic film can promote carrier transfer and charge collection, facilitating efficient photocurrent generation. This new device design strategy opens up a new window in developing low-cost sensitive NIR narrowband detection.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202302072-sup-0001-SuppMat.pdf985.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. P. Gupta, A. S. Pawbake, B. R. Sathe, D. J. Late, P. S. Walke, Sens. Actuators, B 2019, 293, 83.
- 2R. R. LaPierre, M. Robson, K. M. Azizur-Rahman, P. Kuyanov, J. Phys. D: Appl. Phys. 2017, 50, 123001.
- 3Y.-L. Wu, K. Fukuda, T. Yokota, T. Someya, Adv. Mater. 2019, 31, 1903687.
- 4Z. Ma, Y. Zhang, T. Li, X. Tang, H. Zhao, J. Li, C. Ma, J. Yao, Appl. Phys. A 2020, 126, 869.
- 5M. Babics, H. Bristow, W. Zhang, A. Wadsworth, M. Neophytou, N. Gasparini, I. McCulloch, J. Mater. Chem. C 2021, 9, 2375.
- 6C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E.-N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, B. S. Ooi, Light Sci. Appl. 2019, 8, 94.
- 7M.-B. Lien, C.-H. Liu, I. Y. Chun, S. Ravishankar, H. Nien, M. Zhou, J. A. Fessler, Z. Zhong, T. B. Norris, Nat. Photonics 2020, 14, 143.
- 8A. Hwang, M. Park, Y. Park, Y. Shim, S. Youn, C.-H. Lee, H. B. Jeong, H. Y. Jeong, J. Chang, K. Lee, G. Yoo, J. Heo, Science Adv. 2021, 7, eabj2521.
- 9Z. Cheng, T. Zhao, H. Zeng, Small Sci. 2022, 2, 2100051.
- 10D. M. Lyons, A. Armin, M. Stolterfoht, R. C. R. Nagiri, R. D. Jansen-van Vuuren, B. N. Pal, P. L. Burn, S.-C. Lo, P. Meredith, Org. Electron. 2014, 15, 2903.
- 11B. Sun, G. Zhou, Y. Wang, X. Xu, L. Tao, N. Zhao, H. K. Tsang, X. Wang, Z. Chen, J.-B. Xu, Adv. Opt. Mater. 2021, 9, 2100158.
- 12L. Shen, Y. Zhang, Y. Bai, X. Zheng, Q. Wang, J. Huang, Nanoscale 2016, 8, 12990.
- 13Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, D. R. S. Cumming, ACS Photonics 2018, 5, 663.
- 14H. Guo, L. Jiang, K. Huang, R. Wang, S. Liu, Z. Li, X. Rong, G. Dong, Org. Electron. 2021, 92, 106122.
- 15S. Veeralingam, S. Badhulika, Mater. Res. Bull. 2022, 147, 111640.
- 16J. H. Kim, A. Liess, M. Stolte, A.-M. Krause, V. Stepanenko, C. Zhong, D. Bialas, F. Spano, F. Würthner, Adv. Mater. 2021, 33, 2100582.
- 17X. Huang, J. Oh, Y. Cheng, B. Huang, S. Ding, Q. He, F. Wu, C. Yang, L. Chen, Y. Chen, J. Mater. Chem. A 2021, 9, 5711.
- 18B. Xie, R. Xie, K. Zhang, Q. Yin, Z. Hu, G. Yu, F. Huang, Y. Cao, Nat. Commun. 2020, 11, 2871.
- 19A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, N. J. Halas, Nat. Commun. 2013, 4, 1643.
- 20M. Liu, K. Yang, Z. Zhao, Z. Zhou, X. Ma, J. Wang, F. Zhang, J. Phys. Chem. C 2021, 125, 18536.
- 21L. Gao, C. Ge, W. Li, C. Jia, K. Zeng, W. Pan, H. Wu, Y. Zhao, Y. He, J. He, Z. Zhao, G. Niu, X. Guo, F. P. G. de Arquer, E. H. Sargent, J. Tang, Adv. Funct. Mater. 2017, 27, 1702360.
- 22Y. Fang, Q. Dong, Y. Shao, Y. Yuan, J. Huang, Nat. Photonics 2015, 9, 679.
- 23K. Vandewal, S. Albrecht, E. T. Hoke, K. R. Graham, J. Widmer, J. D. Douglas, M. Schubert, W. R. Mateker, J. T. Bloking, G. F. Burkhard, A. Sellinger, J. M. J. Fréchet, A. Amassian, M. K. Riede, M. D. McGehee, D. Neher, A. Salleo, Nat. Mater. 2014, 13, 63.
- 24Z. Liu, L. Tao, Y. Zhang, G. Zhou, H. Zhu, Y. Fang, G. Wu, D. Yang, H. Chen, Adv. Opt. Mater. 2021, 9, 2100288.
- 25M. Zhang, J. Fang, F. Zhang, J. Chen, H. Yu, Opt. Commun. 2017, 405, 216.
- 26W. S. Ho, C.-H. Lin, T.-H. Cheng, W. W. Hsu, Y.-Y. Chen, P.-S. Kuo, C. W. Liu, J. Am. Chem. Soc. 2009, 94, 061114.
- 27Y. Zhong, T. J. Sisto, B. Zhang, K. Miyata, X. Y. Zhu, M. L. Steigerwald, F. Ng, C. Nuckolls, J. Am. Chem. Soc. 2017, 139, 5644.
- 28Y. L. Jing, Z. F. Li, Q. Li, X. S. Chen, P. P. Chen, H. Wang, M. Y. Li, N. Li, W. Lu, Sci. Rep. 2016, 6, 25849.
- 29A. Salmanogli, D. Gokcen, H. S. Gecim, Phys. Rev. Appl. 2019, 11, 024075.
- 30S. Liang, Z. Ma, G. Wu, N. Wei, L. Huang, H. Huang, H. Liu, S. Wang, L.-M. Peng, ACS Nano 2016, 10, 6963.
- 31L. Wang, X. Zhou, S. Yang, G. Huang, Y. Mei, Photonics Res. 2019, 7, 905.
- 32J.-H. Lu, Y.-H. Lin, B.-H. Jiang, C.-H. Yeh, J.-C. Kao, C.-P. Chen, Nat. Commun. 2018, 28, 1703398.
- 33A. Armin, R. D. Jansen-van Vuuren, N. Kopidakis, P. L. Burn, P. Meredith, Nat. Commun. 2015, 6, 6343.
- 34A. Genco, G. Giordano, S. Carallo, G. Accorsi, Y. Duan, S. Gambino, M. Mazzeo, Org. Electron. 2018, 62, 174.
- 35X. Nie, H. Zhen, G. Huang, Y. Yin, S. Li, P. Chen, X. Zhou, Y. Mei, W. Lu, Appl. Phys. Lett. 2020, 116, 161107.
- 36Y. A. V. Espinel, F. G. S. Santos, G. O. Luiz, T. P. M. Alegre, G. S. Wiederhecker, Sci. Rep. 2017, 7, 43423.
- 37C. P. Verma, M. Adnan, P. Srivastava, A. Kandasami, D. Kanjilal, G. Vijaya Prakash, J. Phys. D: Appl. Phys. 2021.
- 38J. Lu, J. Yao, J. Yan, W. Gao, L. Huang, Z. Zheng, M. Zhang, J. Li, Mater. Horiz. 2020, 7, 1427.
- 39M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, T. Mueller, Nano Lett. 2012, 12, 2773.
- 40B. Siegmund, A. Mischok, J. Benduhn, O. Zeika, S. Ullbrich, F. Nehm, M. Böhm, D. Spoltore, H. Fröb, C. Körner, K. Leo, K. Vandewal, Nat. Commun. 2017, 8, 15421.
- 41R. Pillai, D. Starikov, J. Gandhi, A. Debnath, R. Li, C. Boney, A. Bensaoula, J. Vac. Sc. Technol., B 2014, 33, 011205.
10.1116/1.4904760 Google Scholar
- 42H. K. Kaplan, S. K. Akay, M. Ahmetoğlu, Appl. Surf. Sci. 2022, 601, 154217.
- 43L. Wang, Z. Li, M. Li, S. Li, Y. Lu, N. Qi, J. Zhang, C. Xie, C. Wu, L. B. Luo, ACS Appl. Mater. Interfaces 2020, 12, 21845.
- 44L. Wang, H. Luo, H. Zuo, J. Tao, Y. Yu, X. Yang, M. Wang, J. Hu, C. Xie, D. Wu, L. Luo, IEEE Trans. Electron Devices 2020, 67, 3211.
- 45L. Wang, B. H. Chen, C. Y. Fang, J. He, C. Y. Wu, X. Zhang, X. P. Yang, J. B. Mao, J. G. Hu, L. B. Luo, IEEE Trans. Electron Devices 2022, 69, 3258.
- 46Y. Zhan, Y. Wang, Q. Cheng, C. Li, K. Li, H. Li, J. Peng, B. Lu, Y. Wang, Y. Song, L. Jiang, M. Li, Sol. Energy 2019, 58, 16456.
- 47C. Gigli, G. Marino, A. Borne, P. Lalanne, G. Leo, Front. Phys. 2019, 7, 00221.
- 48A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, B. Luk'yanchuk, Science 2016, 354, aag2472.
- 49Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. Gu, G.-Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, A.-Q. Liu, Adv. Opt. Mater. 2017, 5, 1601103.
- 50P. C. Wu, C. Y. Liao, V. Savinov, T. L. Chung, W. T. Chen, Y.-W. Huang, P. R. Wu, Y.-H. Chen, A.-Q. Liu, N. I. Zheludev, D. P. Tsai, ACS Nano 2018, 12, 1920.
- 51Q. Zhao, L. Liu, S. Li, R. Liu, Appl. Surf. Sci. 2019, 465, 164.