Triple Stimuli-Responsive Flexible Shape Memory Foams with Super-Amphiphilicity
Xinyun Ding
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorYunan Shi
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorShijie Xu
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorYukun Zhang
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorCorresponding Author
Jiang Du
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Jun Qiu
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Key Laboratory of Advanced Civil Engineering Materials, Tongji University, Education of Ministry, Shanghai, 201804 China
E-mail: [email protected], [email protected]
Search for more papers by this authorXinyun Ding
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorYunan Shi
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorShijie Xu
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorYukun Zhang
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorCorresponding Author
Jiang Du
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Jun Qiu
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Key Laboratory of Advanced Civil Engineering Materials, Tongji University, Education of Ministry, Shanghai, 201804 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Highly porous multi-responsive shape memory foams have unique advantages in designing 3D materials with lightweight for varied applications. Herein, a facile and efficient approach to fabricating a thermo-, electro-, and photo-responsive shape memory composite foam is demonstrated. A specific multi-step carbonization protocol is adopted for transforming commercial melamine sponge (MS) to highly porous carbon foam (CF) with robust elastic resilience, efficient electrothermal/photothermal conversions, and super-amphiphilicity. It is a novel proposal for CF to take the dual role of the elastic supporting framework and 3D energy conversion/transmission network without any functional fillers. The composite foam cPCL@CF incorporates the CF skeleton with in situ crosslinked polycaprolactone (PCL) layers, which exhibits high conductivity (≈140 S m−1) and excellent light absorption (≈97.7%) in the range of 250–2500 nm. By triggering the crystalline transition of PCL, the composite foam displays sensitive electro- and photo-induced shape memory effect (SME) with outstanding shape fixation ratio (Rf) and recovery ratio (Rr). Thanks to the super-amphiphilicity and high electrical conductivity, the cPCL@CF composite foam can give rapid and distinguishable electric signals upon tiny drips of salt solutions or lithium-ion battery (LIB) electrolytes, making it a new type of sensor for detecting electrolyte leakage.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202205797-sup-0001-SuppMat.pdf1,003.3 KB | Supporting Information |
smll202205797-sup-0002-MovieS1.mp41.4 MB | Supporting Movie 1 |
smll202205797-sup-0003-MovieS2.mp41 MB | Supporting Movie 2 |
smll202205797-sup-0004-MovieS3.mp41.4 MB | Supporting Movie 3 |
smll202205797-sup-0005-MovieS4.mp42.3 MB | Supporting Movie 4 |
smll202205797-sup-0006-MovieS5.mp41.2 MB | Supporting Movie 5 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Q. Zhao, H. J. Qi, T. Xie, Prog. Polym. Sci. 2015, 49–50, 79.
- 2A. Lendlein, O. E. C. Gould, Nat. Rev. Mater. 2019, 4, 116.
- 3L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H. Purnawali, C. Tang, Mater. Des. 2012, 33, 577.
- 4M. Zare, M. P. Prabhakaran, N. Parvin, S. Ramakrishna, Chem. Eng. J. 2019, 374, 706.
- 5W. Li, J. Liu, L. Chen, W. Wei, K. Qian, Y. Liu, J. Leng, Small 2022, 18, 2105958.
- 6H. Lu, B. Wu, X. Yang, J. Zhang, Y. Jian, H. Yan, D. Zhang, Q. Xue, T. Chen, Small 2020, 16, 2005461.
- 7M. Yang, Z. Yuan, J. Liu, Z. Fang, L. Fang, D. Yu, Q. Li, Adv. Opt. Mater. 2019, 7, 1900069.
- 8A. Miriyev, K. Stack, H. Lipson, Nat. Commun. 2017, 8, 596.
- 9D. Zhang, Y. Tang, C. Zhang, F. Huhe, B. Wu, X. Gong, S. S. C. Chuang, J. Zheng, Small 2022, 18, 2203899.
- 10Z. Wang, C. Valenzuela, J. Wu, Y. Chen, L. Wang, W. Feng, Small 2022, 18, 2201597.
- 11K. R. Ryan, M. P. Down, C. E. Banks, Chem. Eng. J. 2021, 403, 126162.
- 12J. L. Hu, Y. Zhu, H. H. Huang, J. Lu, Prog. Polym. Sci. 2012, 37, 1720.
- 13Y. J. Liu, H. Y. Du, L. W. Liu, J. S. Leng, Smart Mater. Struct. 2014, 23, 22.
- 14F. Pilate, A. Toncheva, P. Dubois, J. M. Raquez, Eur. Polym. J. 2016, 80, 268.
- 15A. Choe, J. Yeom, Y. Kwon, Y. Lee, Y.-E. Shin, J. Kim, H. Ko, Mater. Horiz. 2020, 7, 3258.
- 16Y. Yan, H. Xia, Y. Qiu, Z. Xu, Q.-Q. Ni, Compos. Sci. Technol. 2019, 172, 108.
- 17Z. K. Wang, Y. Q. Zhang, L. Yuan, J. Hayat, N. M. Trenor, M. E. Lamm, L. Vlaminck, S. Billiet, F. E. Du Prez, Z. G. Wang, C. B. Tang, ACS Macro Lett. 2016, 5, 602.
- 18Q. F. Liu, L. Jiang, Y. Y. Zhao, Y. Wang, J. X. Lei, Macromol. Chem. Phys. 2019, 220, 6.
- 19X. L. Xiao, D. Y. Kong, X. Y. Qiu, W. B. Zhang, F. H. Zhang, L. W. Liu, Y. J. Liu, S. Zhang, Y. Hu, J. S. Leng, Macromolecules 2015, 48, 3582.
- 20D. Habault, H. J. Zhang, Y. Zhao, Chem. Soc. Rev. 2013, 42, 7244.
- 21C. C. Zhu, C. Ninh, C. J. Bettinger, Biomacromolecules 2014, 15, 3474.
- 22Z. Li, X. Y. Zhang, S. Q. Wang, Y. Yang, B. Y. Qin, K. Wang, T. Xie, Y. Wei, Y. Ji, Chem. Sci. 2016, 7, 4741.
- 23H. Tobushi, S. Hayashi, K. Hoshio, Y. Ejiri, Sci. Technol. Adv. Mater. 2008, 9, 015009.
- 24C. Li, L. Qiu, B. Zhang, D. Li, C. Y. Liu, Adv. Mater. 2016, 28, 1510.
- 25L. Santo, Prog. Aerosp. Sci. 2016, 81, 60.
- 26Y. Shi, X. Ding, K. Pan, Z. Gao, J. Du, J. Qiu, J. Mater. Chem. A 2022, 10, 7705.
- 27Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo, J. Liang, D. Han, R. Lyu, C. Qi, W. Lv, F. Kang, Q. H. Yang, Adv. Mater. 2019, 31, 1902432.
- 28Y. W. Shao, W. W. Hu, M. H. Gao, Y. Y. Xiao, T. Huang, N. Zhang, J. H. Yang, X. D. Qi, Y. Wang, Composites, Part A 2021, 143, 106291.
- 29X. Zhao, X. J. Zha, J. H. Pu, L. Bai, R. Y. Bao, Z. Y. Liu, M. B. Yang, W. Yang, J. Mater. Chem. A 2019, 7, 10446.
- 30X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang, X. Liang, Q. Zhou, H. Liu, S. Cui, J. Adv. Ceram. 2019, 8, 479.
- 31H. M. C. M. Herath, J. A. Epaarachchi, M. M. Islam, W. Al-Azzawi, J. Leng, F. Zhang, Compos. Sci. Technol. 2018, 167, 206.
- 32J. Du, Z. Zhang, D. Liu, T. Ren, D. Wan, H. Pu, Compos. Sci. Technol. 2019, 169, 45.
- 33J. Wang, H. Wang, Z. Zhang, Y. Zhao, APL Mater. 2020, 8, 050903.
- 34C. Li, D. Jiang, H. Liang, B. Huo, C. Liu, W. Yang, J. Liu, Adv. Funct. Mater. 2018, 28, 1704674.
- 35C. Huang, J. Peng, Y. Cheng, Q. Zhao, Y. Du, S. Dou, A. P. Tomsia, H. D. Wagner, L. Jiang, Q. Cheng, J. Mater. Chem. A 2019, 7, 2787.
- 36H. Yang, W. R. Leow, T. Wang, J. Wang, J. Yu, K. He, D. Qi, C. Wan, X. Chen, Adv. Mater. 2017, 29, 1701627.
- 37Y. J. He, Y. W. Shao, Y. Y. Xiao, J. H. Yang, X. D. Qi, Y. Wang, ACS Appl. Mater. Interfaces 2022, 14, 6057.
- 38H. Wu, S. Deng, Y. Shao, J. Yang, X. Qi, Y. Wang, ACS Appl. Mater. Interfaces 2019, 11, 46851.
- 39C. Zhu, T. Y. Han, E. B. Duoss, A. M. Golobic, J. D. Kuntz, C. M. Spadaccini, M. A. Worsley, Nat. Commun. 2015, 6, 6962.
- 40Z. Wang, X. Shen, M. Akbari Garakani, X. Lin, Y. Wu, X. Liu, X. Sun, J. K. Kim, ACS Appl. Mater. Interfaces 2015, 7, 5538.
- 41H. Sun, Z. Xu, C. Gao, Adv. Mater. 2013, 25, 2554.
- 42L. Qiu, J. Z. Liu, S. L. Chang, Y. Wu, D. Li, Nat. Commun. 2012, 3, 1241.
- 43S. Nardecchia, D. Carriazo, M. L. Ferrer, M. C. Gutierrez, F. del Monte, Chem. Soc. Rev. 2013, 42, 794.
- 44C. Liu, K. Hong, X. Sun, A. Natan, P. Luan, Y. Yang, H. Zhu, J. Mater. Chem. A 2020, 8, 12323.
- 45Z. Fang, C. Li, J. Sun, H. Zhang, J. Zhang, Carbon 2007, 45, 2873.
- 46S. Yu, Z. Chen, Y. Wang, R. Luo, Y. Pan, J. Porous Mater. 2017, 25, 527.
- 47W. Liu, N. Liu, Y. Yue, J. Rao, C. Luo, H. Zhang, C. Yang, J. Su, Z. Liu, Y. Gao, J. Mater. Chem. C 2018, 6, 1451.
- 48M. Maleki, A. Imani, R. Ahmadi, H. Emrooz, A. Beitollahi, Appl. Energy 2020, 258, 114108.
- 49A. Stolz, S. Floch, L. Reinert, S. Ramos, J. Combes, Y. Soneda, P. Chaudet, D. Baillis, N. Blanchard, L. Duclaux, A. Miguel, Carbon 2016, 107, 198.
- 50F. Gong, H. Li, W. Wang, J. Huang, D. Xia, J. Liao, M. Wu, D. V. Papavassiliou, Nano Energy 2019, 58, 322.
- 51I. K. Park, H. Sun, S. H. Kim, Y. Kim, G. E. Kim, Y. Lee, T. Kim, H. R. Choi, J. Suhr, J. D. Nam, Sci. Rep. 2019, 9, 7033.
- 52J. Liu, Q. Zou, B. Cai, J. Wei, C. Yuan, Y. Li, J. Biomater. Sci., Polym. Ed. 2020, 31, 1421.
- 53C. Han, X. Ran, X. Su, K. Zhang, N. Liu, L. Dong, Polym. Int. 2007, 56, 593.
- 54M. Huang, C. Zhou, Y. Ling, G. Zhao, L. Dong, J. Shi, J. Chen, Plast., Rubber Compos. 2021, 51, 47.
- 55Y. Shi, J. Du, J. Qiu, Chem. Eng. J. 2022, 436, 135220.
- 56A. Avella, R. Mincheva, J. Raquez, G. Re, Polymers 2021, 13, 491.
- 57J. Barros, I. Silva, N. Jaques, M. Fook, R. Wellen, Polym. Test. 2020, 89, 106679.
- 58B. Han, Y. L. Zhang, Q. D. Chen, H. B. Sun, Adv. Funct. Mater. 2018, 28, 1802235.
- 59J. Du, D. Liu, Z. Zhang, X. Yao, D. Wan, H. Pu, Z. Lu, Polymer 2017, 126, 206.
- 60M. Sabzi, M. Babaahmadi, M. Rahnama, ACS Appl. Mater. Interfaces 2017, 9, 24061.
- 61Y. Gao, W. Liu, S. Zhu, Ind. Eng. Chem. Res. 2019, 58, 19495.
- 62X. Wei, F. Xue, X. D. Qi, J. H. Yang, Z. W. Zhou, Y. P. Yuan, Y. Wang, Appl. Energy 2019, 236, 70.
- 63X. Zhang, X. Q. Wang, F. B. Meng, J. J. Chen, S. Y. Du, Carbon 2019, 154, 115.
- 64Y. Lu, H. Luo, J. Qiu, Smart Mater. Struct. 2021, 30, 085007.
- 65Z. Zhou, Q. Li, L. Chen, C. Liu, S. Fan, J. Mater. Chem. B 2016, 4, 1228.
- 66Z. Zhang, T. Lu, D. Yang, S. Lu, R. Cai, W. Tan, Small 2022, 18, 2203334.
- 67X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang, Q. Zhou, H. Liu, S. Cui, J. Anal. Appl. Pyrolysis 2019, 142, 104619.
- 68Z. Zhu, Y. Tian, Y. Chen, Z. Gu, S. Wang, L. Jiang, Angew. Chem., Int. Ed. Engl. 2017, 56, 5720.
- 69K. Yang, J. Du, Z. Zhang, D. Liu, T. Ren, J. Colloid Interface Sci. 2020, 560, 795.
- 70X. Song, Y. Chen, M. Rong, Z. Xie, T. Zhao, Y. Wang, X. Chen, O. S. Wolfbeis, Angew. Chem., Int. Ed. Engl. 2016, 55, 3936.
- 71V. T. Bui, X. Liu, S. H. Ko, H. S. Choi, J. Colloid Interface Sci. 2015, 453, 209.
- 72M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561.
- 73X. Y. Yang, X. L. Feng, X. Jin, M. Z. Shao, B. L. Yan, J. M. Yan, Y. Zhang, X. B. Zhang, Angew. Chem., Int. Ed. Engl. 2019, 58, 16411.
- 74D. Ren, X. Feng, L. Lu, X. He, M. Ouyang, Appl. Energy 2019, 250, 323.
- 75C. P. Grey, J. M. Tarascon, Nat. Mater. 2016, 16, 45.
- 76G. Gachot, S. Grugeon, M. Armand, S. Pilard, P. Guenot, J. Tarascon, S. Laruelle, J. Power Sources 2008, 178, 409.
- 77P. Ribière, S. Grugeon, M. Morcrette, S. Boyanov, S. Laruelle, G. Marlair, Energy Environ. Sci. 2012, 5, 5271.