Partial Sulphidation to Regulate Coordination Structure of Single Nickel Atoms on Graphitic Carbon Nitride for Efficient Solar H2 Evolution
Guanchao Wang
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorYing Ma
Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
Search for more papers by this authorTing Zhang
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorYuefeng Liu
Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
Search for more papers by this authorBaojun Wang
State Key Laboratory of Clean and Efficient Coal Utilization, Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Taiyuan, 030024 P. R. China
Search for more papers by this authorCorresponding Author
Riguang Zhang
State Key Laboratory of Clean and Efficient Coal Utilization, Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Taiyuan, 030024 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhongkui Zhao
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGuanchao Wang
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorYing Ma
Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
Search for more papers by this authorTing Zhang
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorYuefeng Liu
Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
Search for more papers by this authorBaojun Wang
State Key Laboratory of Clean and Efficient Coal Utilization, Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Taiyuan, 030024 P. R. China
Search for more papers by this authorCorresponding Author
Riguang Zhang
State Key Laboratory of Clean and Efficient Coal Utilization, Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Taiyuan, 030024 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhongkui Zhao
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
To develop a non-precious highly efficient cocatalyst to replace Pt on graphitic carbon nitride (g-C3N4) for solar H2 production is great significant, but still remains a huge challenge. The emerging single-atom catalyst presents a promising strategy for developing highly efficient non-precious cocatalyst owing to its unique adjustability of local coordination environment and electronic structure. Herein, this work presents a facile approach to achieve single Ni sites (Ni1-N2S) with unique local coordination structure featuring one Ni atom coordinated with two nitrogen atoms and one sulfur atom, confirmed by high-angle annular dark-field scanning transmission electron microscopy, X-ray absorption spectroscopy, and density functional theory calculation. Thanks to the unique electron structure of Ni1-N2S sites, the 1095 µmol g−1 h−1 of high H2 evolution rate with 4.1% of apparent quantum yield at 420 nm are achieved. This work paves a pathway for designing a highly efficient non-precious transition metal cocatalyst for photocatalytic H2 evolution.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202205758-sup-0001-SuppMat.pdf3.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 2019, 48, 2109.
- 2T. Hisatomi, K. Domen, Nat. Catal. 2019, 2, 387.
- 3L. Yuan, C. Han, M. Q. Yang, Y. J. Xu, Int. Rev. Phys. Chem. 2016, 35, 1.
- 4Y. H. Li, J. Y. Li, Y. J. Xu, EnergyChem 2021, 3, 100047.
- 5N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337.
- 6S. Q. Luo, H. W. Lin, Q. Wang, X. H. Ren, D. H. Pinilla, T. Nagao, Y. Xie, G. L. Liang, S. J. Li, H. Song, M. Oshikiri, J. H. Ye, J. Am. Chem. Soc. 2021, 143, 12145.
- 7Y. Li, B. H. Li, D. N. Zhang, L. Cheng, Q. J. Xiang, ACS Nano 2020, 14, 10552.
- 8M. Volokh, G. Peng, J. Barrio, M. Shalom, Angew. Chem., Int. Ed. 2019, 58, 6138.
- 9M. Baar, S. Blechert, Chem. - Eur. J. 2015, 21, 526.
- 10M. Woźnica, N. Chaoui, S. Taabache, S. Blechert, Chem. - Eur. J. 2014, 20, 14624.
- 11F. Yu, L. C. Wang, Q. J. Xing, D. K. Wang, X. H. Jiang, G. C. Li, A. M. Zheng, F. R. Ai, J. P. Zou, Chin. Chem. Lett. 2020, 31, 1648.
- 12J. P. Zou, D. D. Wu, J. M. Luo, Q. J. Xing, X. B. Luo, W. H. Dong, S. L. Luo, H. M. Du, S. Suib, ACS Catal. 2016, 6, 6861.
- 13L. S. Zhang, X. H. Jiang, Z. A. Zhong, L. Tian, Q. Sun, Y. T. Cui, X. Lu, J. P. Zou, S. L. Luo, Angew. Chem., Int. Ed. 2021, 60, 21751.
- 14M. Zhu, L. S. Zhang, S. S. Liu, D. K. Wang, Y. C. Qin, Y. Chen, W. L. Dai, Y. H. Wang, Q. J. Xing, J. P. Zou, Chin. Chem. Lett. 2020, 31, 1961.
- 15Y. Xia, M. Sayed, L. Zhang, B. Cheng, J. Yu, Chem. Catal. 2021, 1, 1173.
- 16X. H. Jiang, L. S. Zhang, H. Y. Liu, D. S. Wu, F. Y. Wu, L. Tian, L. L. Liu, J. P. Zou, S. L. Luo, B. B. Chen, Angew. Chem., Int. Ed. 2020, 59, 23112.
- 17H. J. Yu, R. Shi, Y. X. Zhao, T. Bian, Y. F. Zhao, C. Zhou, G. Waterhouse, L. Z. Wu, H. C. Tung, T. R. Zhang, Adv. Mater. 2017, 29, 1605148.
- 18Y. T. Xiao, S. E. Guo, G. H. Tian, B. J. Jiang, Z. Y. Ren, C. G. Tian, W. Li, H. G. Fu, Sci. Bull. 2021, 66, 275.
- 19G. M. Liu, H. Q. Lv, Y. B. Zeng, M. Z. Yuan, Q. G. Meng, Y. H. Wang, C. Y. Wang, Trans. Tianjin Univ. 2021, 27, 139.
- 20X. Li, W. Bi, L. Zhang, S. Tao, W. Chu, Q. Zhang, Y. Luo, C. Wu, Y. Xie, Adv. Mater. 2016, 28, 2427.
- 21K. Chang, X. Hai, J. Ye, Adv. Energy Mater. 2016, 6, 1502555.
- 22L. Zhang, M. Zhou, A. Wang, T. Zhang, Chem. Rev. 2020, 120, 683.
- 23L. Zhang, R. Long, Y. Zhang, D. Duan, Y. Xiong, Y. Zhang, Y. Bi, Angew. Chem., Int. Ed. 2020, 59, 6224.
- 24G. Gao, Y. Jiao, E. R. Waclawik, A. Du, J. Am. Chem. Soc. 2016, 138, 6292.
- 25L. Jiao, H. L. Hai, Chem 2019, 5, 786.
- 26Q. Yang, M. L. Luo, K. W. Liu, H. M. Cao, H. J. Yan, Appl. Catal. B 2020, 276, 119174.
- 27J. Guan, T. Pai, K. Kamiya, N. Fukui, H. Maeda, T. Sato, H. Suzuki, O. Tomita, H. Nishihara, R. Abe, R. Sakamoto, ACS Catal. 2022, 12, 3881.
- 28P. Xue, X. Pan, J. Huang, Y. Gao, W. Guo, J. Li, M. Tang, Z. Wang, ACS Appl. Mater. Interfaces 2021, 13, 59915.
- 29H. Wang, C. Qian, J. Liu, Y. Zeng, D. Wang, W. Zhou, L. Gu, H. Wu, G. Liu, Y. Zhao, J. Am. Chem. Soc. 2020, 142, 4862.
- 30Q. Zhu, Z. Xu, M. Xing, J. Zhang, B. Qiu, Small 2021, 17, 2101070.
- 31J. S. Zhang, W. C. Zhou, W. D. Zhang, Y. X. Yu, Int. J. Hydrogen Energy 2021, 46, 7782.
- 32Y. Jiao, Q. Huang, J. Wang, Z. He, Z. Li, Appl. Catal. B 2019, 247, 124.
- 33J. Li, W. Wu, Y. Li, H. Zhang, X. Xu, Y. Jiang, K. Lin, ACS Appl. Energy Mater. 2021, 4, 11836.
- 34Y. Li, Y. Wang, C. L. Dong, Y. C. Huang, J. Chen, Z. Zhang, F. Meng, Q. Zhang, Y. Huangfu, D. Zhao, L. Gu, S. Shen, Chem. Sci. 2021, 12, 3633.
- 35K. Li, Y. Lin, K. Wang, Y. Wang, Y. Zhang, Y. Zhang, F. T. Liu, Appl. Catal. B 2020, 268, 118402.
- 36M. Zhang, C. Lai, B. Li, F. Xu, D. Huang, S. Liu, L. Qin, Y. Fu, X. Liu, H. Yi, Y. Zhang, J. He, L. Chen, Chem. Eng. J. 2020, 396, 125343.
- 37Z. Sun, M. Zhu, X. Lv, Y. Liu, C. Shi, Y. Dai, A. Wang, T. Majima, Appl. Catal. B 2019, 246, 330.
- 38J. Ge, Y. Liu, D. Jiang, L. Zhang, P. Du, Chin. J. Catal. 2019, 40, 160.
- 39B. Luo, R. Song, J. Geng, X. Liu, D. Jing, M. Wang, C. Cheng, Appl. Catal. B 2019, 256, 117819.
- 40R. Shen, J. Xie, P. Guo, L. Chen, X. Chen, X. Li, ACS Appl. Energy Mater. 2018, 1, 2232.
- 41Y. Cao, S. Chen, Q. Luo, H. Yan, Y. Lin, W. Liu, L. Cao, J. Lu, J. Yang, T. Yao, Angew. Chem., Int. Ed. 2017, 56, 12191.
- 42X. Jin, R. Wang, L. Zhang, R. Si, M. Shen, M. Wang, J. Tian, J. Shi, Angew. Chem., Int. Ed. 2020, 59, 6827.
- 43G. Wang, T. Zhang, W. Yu, Z. Sun, X. Nie, R. Si, Y. Liu, Z. Zhao, CCS Chem. 2021, 3, 2850.
10.31635/ccschem.021.202101191 Google Scholar
- 44J. Ma, F. Zhang, Y. Tan, S. Wang, H. Chen, L. R. Zheng, H. B. Liu, R. Li, ACS Appl. Mater. Interfaces 2022, 14, 18383.
- 45C. Jia, X. Tian, Y. Zhao, W. H. Ren, Y. B. Li, Z. Su, S. Smith, C. Zhao, Angew. Chem., Int. Ed. 2021, 60, 23342.
- 46G. C. Wang, T, Z., W. W. Yu, R. Si, Y. F. Liu, Z. Z. Zhao, ACS Catal. 2020, 10, 5715.
- 47K. L. Zhou, Z. L. Wang, C. B. Han, X. X. Ke, C. H. Wang, Y. H. Jin, Q. Q. Zhang, J. B. Liu, H. Wang, H. Yan, Nat Commun 2021, 12, 3783.
- 48Q. Zhao, J. Sun, S. C. Li, C. P. Huang, W. F. Yao, W. Chen, T. Zeng, Q. Wu, Q. J. Xu, ACS Catal. 2018, 8, 11863.
- 49B. Delley, J. Chem. Phys. 2000, 113, 7756.
- 50B. Delley, J. Chem. Phys. 1990, 92, 508.
- 51J. P. Perdew, K. Burke, Phys. Rev. Lett. 1996, 77, 3865.
- 52B. Hammer, L. B. Hansen, J. K. Nørskov, Phys. Rev. B 1999, 59, 7413.
- 53H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- 54T. A. Halgren, W. N. Lipscomb, Chem. Phys. Lett. 1977, 49, 225.
- 55N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, J. Andzelm, Comput. Mater. Sci. 2003, 28, 250.