Phase Transition Induced via the Template Enabling Cocoon-like MoS2 an Exceptionally Electromagnetic Absorber
Jiefeng Fang
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorWenbin You
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorChunyang Xu
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorBintong Yang
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorMin Wang
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorJincang Zhang
Zhejiang Laboratory, Hangzhou, 311100 P. R. China
Search for more papers by this authorCorresponding Author
Renchao Che
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai, 200438 P. R. China
Zhejiang Laboratory, Hangzhou, 311100 P. R. China
E-mail: [email protected]
Search for more papers by this authorJiefeng Fang
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorWenbin You
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorChunyang Xu
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorBintong Yang
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorMin Wang
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorJincang Zhang
Zhejiang Laboratory, Hangzhou, 311100 P. R. China
Search for more papers by this authorCorresponding Author
Renchao Che
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai, 200438 P. R. China
Zhejiang Laboratory, Hangzhou, 311100 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Structural engineering via the template method is efficient for micro-nano assembling. However, only structural design and lack of composition control restrict their advanced application. To overcome this issue, applying a template to simultaneously realize the structural design and fine component control is highly desired, which has been ignored. In this study, a spinel-shaped MoS2 heterostructure with controlled phase ratios of 1H and 2H phase is developed using the AlOOH template method. This work demonstrates that the MoS2 phase transition mechanism from 2H to 1T is substantially attributed to the close exposed crystal's surface and approximately accordant surface energy. The superiority and additional proof are provided based on density-functional theory simulation, transmission electron microscope holography, etc. With an effective absorptance region of 6.3 GHz under a thickness of 1.4 mm, the reported samples present outstanding microwave absorption capacity. This is attributed to the beneficial coupled effect between the well-designed structure and phase regulation. This work offers valuable insights into structural engineering and component regulation template methods.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202205407-sup-0001-SuppMat.pdf606.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Wu, H. W. Cheng, C. Jin, B. Yang, C. Xu, K. Pei, H. Zhang, Z. Yang, R. Che, Adv. Mater. 2021, 34, 2107538.
- 2Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang, Nat. Commun. 2022, 13, 1227.
- 3J. Fang, H. Lv, B. Zhao, Z. Liu, X. Li, C. Xu, R. Zhang, H. Zhang, X. Liu, X. Zhang, M. Wang, R. Che, J. Mater. Chem. A 2022, 10, 10909.
- 4M. Huang, L. Wang, W. You, R. Che, Small 2021, 17, 2101416.
- 5W. Ma, P. He, J. Xu, X. Liu, S. Lin, Z.-K. Cui, P. Zuo, Q. Zhuang, J. Mater. Chem. A 2022, 10, 11405.
- 6W. Xue, G. Yang, S. Bi, J. Zhang, Z.-L. Hou, Carbon 2021, 173, 521.
- 7K. Yang, Y. Cui, Z. Liu, P. Liu, Q. Zhang, B. Zhang, Chem. Eng. J. 2021, 426, 131308.
- 8Y.-Y. Wang, J.-L. Zhu, N. Li, J.-F. Shi, J.-H. Tang, D.-X. Yan, Z.-M. Li, Nano Res. 2022, 15, 7723.
- 9Y. Zhang, Z. Yang, M. Li, L. Yang, J. Liu, Y. Ha, R. Wu, Chem. Eng. J. 2020, 382, 123039.
- 10Z. Yang, W. You, X. Xiong, R. Zhang, Z. Wu, B. Zhao, M. Wang, X. Liu, X. Zhang, R. Che, ACS Appl. Mater. Interfaces 2022, 14, 32369.
- 11B. Yang, J. Fang, C. Xu, H. Cao, R. Zhang, B. Zhao, M. Huang, X. Wang, H. Lv, R. Che, Nano-Micro Lett. 2022, 14, 170.
- 12C. Xu, L. Wang, X. Li, X. Qian, Z. Wu, W. You, K. Pei, G. Qin, Q. Zeng, Z. Yang, C. Jin, R. Che, Nano-Micro Lett. 2021, 13, 47.
- 13X. Li, L. Yu, W. Zhao, Y. Shi, L. Yu, Y. Dong, Y. Zhu, Y. Fu, X. Liu, F. Fu, Chem. Eng. J. 2020, 379, 122393.
- 14H. Lv, Z. Yang, B. Liu, G. Wu, Z. Lou, B. Fei, R. Wu, Nat. Commun. 2021, 12, 834.
- 15X. Xu, F. Ran, Z. Fan, Z. Cheng, Z. Xie, T. Lv, Y. Liu, Carbon 2021, 178, 320.
- 16S. Dong, P. Hu, X. Li, C. Hong, X. Zhang, J. Han, Chem. Eng. J. 2020, 398, 125588.
- 17L. Tang, Y. Tang, J. Zhang, Y. Lin, J. Kong, K. Zhou, J. Gu, Sci. Bull. 2022, 67, 2196.
- 18X. Zhou, B. Zhao, H. Lv, Nano Res. 2022, https://doi.org/10.1007/s12274-022-4950-x.
- 19J. Cheng, L. Cai, Y. Shi, F. Pan, Y. Dong, X. Zhu, H. Jiang, X. Zhang, Z. Xiang, W. Lu, Chem. Eng. J. 2022, 431, 134284.
- 20J. Luo, M. Feng, Z. Dai, C. Jiang, W. Yao, N. Zhai, Nano Res. 2022, 15, 5781.
- 21H. Zhao, X. Xu, Y. Wang, D. Fan, D. Liu, K. Lin, P. Xu, X. Han, Y. Du, Small 2020, 16, 2003407.
- 22H. Lv, Z. Yang, H. Pan, R. Wu, Prog. Mater. Sci. 2022, 127, 100946.
- 23J. Liu, L. Zhang, D. Zang, H. Wu, Adv. Funct. Mater. 2021, 31, 2105018.
- 24J. Liang, F. Ye, Y. Cao, R. Mo, L. Cheng, Q. Song, Adv. Funct. Mater. 2022, 32, 2200141.
- 25M. Qin, L. Zhang, X. Zhao, H. Wu, Adv. Funct. Mater. 2021, 31, 2103436.
- 26J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv, J. Yang, Adv. Funct. Mater. 2020, 30, 2002595.
- 27J. Yan, Y. Huang, X. Zhang, X. Gong, C. Chen, G. Nie, X. Liu, P. Liu, Nano-Micro Lett. 2021, 13, 114.
- 28A. R. P. Santiago, T. He, O. Eraso, M. A. Ahsan, A. N. Nair, V. S. N. Chava, T. Zheng, S. Pilla, O. Fernandez-Delgado, A. Du, S. T. Sreenivasan, L. Echegoyen, J. Am. Chem. Soc. 2020, 142, 17923.
- 29G. Dong, Y. Fang, S. Liao, K. Zhu, J. Yan, K. Ye, G. Wang, D. Cao, J. Colloid Interface Sci. 2021, 601, 594.
- 30Z. Lai, Q. He, T. H. Tran, D. V. M. Repaka, D. D. Zhou, Y. Sun, S. Xi, Y. Li, A. Chaturvedi, C. Tan, B. Chen, G. H. Nam, B. Li, C. Ling, W. Zhai, Z. Shi, D. Hu, V. Sharma, Z. Hu, Y. Chen, Z. Zhang, Y. Yu, X. R. Wang, R. V. Ramanujan, Y. Ma, K. Hippalgaonkar, H. Zhang, Nat. Mater. 2021, 20, 1113.
- 31Y. Sun, Y. Zang, W. Tian, X. Yu, J. Qi, L. Chen, X. Liu, H. Qiu, Energy Environ. Sci. 2022, 15, 1201.
- 32Z. Du, Y. Guo, H. Wang, J. Gu, Y. Zhang, Z. Cheng, B. Li, S. Li, S. Yang, ACS Nano 2021, 15, 19275.
- 33Y. Xie, D. Kocaefe, C. Chen, Y. Kocaefe, J. Nanomater. 2016, 2016, 2302595.
- 34Y. A. Eshete, N. Ling, S. Kim, D. Kim, G. Hwang, S. Cho, H. Yang, Adv. Funct. Mater. 2019, 29, 1904504.
- 35S. Li, Y. Liu, X. Zhao, Q. Shen, W. Zhao, Q. Tan, N. Zhang, P. Li, L. Jiao, X. Qu, Adv. Mater. 2021, 33, 2007480.
- 36Y. Huang, Z. Wang, M. Guan, F. Wu, R. Chen, Adv. Mater. 2020, 32, 2003534.
- 37J. Liu, W. Niu, G. Liu, B. Chen, J. Huang, H. Cheng, D. Hu, J. Wang, Q. Liu, J. Ge, P. Yin, F. Meng, Q. Zhang, L. Gu, Q. Lu, H. Zhang, J. Am. Chem. Soc. 2021, 143, 4387.
- 38H. Chen, M. Zhang, Y. Wang, K. Sun, L. Wang, Z. Xie, Y. Shen, X. Han, L. Yang, X. Zou, Nano Res. 2022, https://doi.org/10.1007/s12274-022-4605-y.
- 39Z. Fan, Y. Chen, Y. Zhu, J. Wang, B. Li, Y. Zong, Y. Han, H. Zhang, Chem. Sci. 2017, 8, 795.
- 40H. Cheng, N. Yang, X. Liu, Y. Guo, B. Liu, J. Yang, Y. Chen, B. Chen, Z. Fan, Q. Lu, S. Yuan, J. Wang, L. Gu, H. Zhang, Adv. Mater. 2021, 33, 2007140.
- 41G. H. Nam, Q. He, X. Wang, Y. Yu, J. Chen, K. Zhang, Z. Yang, D. Hu, Z. Lai, B. Li, Q. Xiong, Q. Zhang, L. Gu, H. Zhang, Adv. Mater. 2019, 31, 1807764.
- 42Y. Zhang, S. Gao, H. Xing, Mater. Lett. 2019, 246, 80.
- 43S. S. Nardekar, K. Krishnamoorthy, S. Manoharan, P. Pazhamalai, S. J. Kim, ACS Nano 2022, 16, 3723.
- 44Z. Lei, J. Zhan, L. Tang, Y. Zhang, Y. Wang, Adv. Energy Mater. 2018, 8, 1703482.
- 45X. Li, X. Lv, X. Sun, C. Yang, Y.-Z. Zheng, L. Yang, S. Li, X. Tao, Appl. Catal., B 2021, 284, 119708.
- 46X. Chen, Z. Wang, Y. Wei, X. Zhang, Q. Zhang, L. Gu, L. Zhang, N. Yang, R. Yu, Angew. Chem., Int. Ed. 2019, 58, 17621.
- 47X. Wang, T. Zhu, S. Chang, Y. Lu, W. Mi, W. Wang, ACS Appl. Mater. Interfaces 2020, 12, 11252.
- 48H. Guo, L. Wang, W. You, L. Yang, X. Li, G. Chen, Z. Wu, X. Qian, M. Wang, R. Che, ACS Appl. Mater. Interfaces 2020, 12, 16831.
- 49M. Ning, P. Jiang, W. Ding, X. Zhu, G. Tan, Q. Man, J. Li, R. W. Li, Adv. Funct. Mater. 2021, 31, 2011229.
- 50Y. Yu, G. H. Nam, Q. He, X. J. Wu, K. Zhang, Z. Yang, J. Chen, Q. Ma, M. Zhao, Z. Liu, F. R. Ran, X. Wang, H. Li, X. Huang, B. Li, Q. Xiong, Q. Zhang, Z. Liu, L. Gu, Y. Du, W. Huang, H. Zhang, Nat. Chem. 2018, 10, 638.
- 51L. Liu, J. Wu, L. Wu, M. Ye, X. Liu, Q. Wang, S. Hou, P. Lu, L. Sun, J. Zheng, L. Xing, L. Gu, X. Jiang, L. Xie, L. Jiao, Nat. Mater. 2018, 17, 1108.
- 52X. Xie, T. Makaryan, M. Zhao, K. L. Van Aken, Y. Gogotsi, G. Wang, Adv. Energy Mater. 2016, 6, 1502161.
- 53D. Wang, X. Zhang, S. Bao, Z. Zhang, H. Fei, Z. Wu, J. Mater. Chem. A 2017, 5, 2681.
- 54S. Park, C. Kim, S. O. Park, N. K. Oh, U. Kim, J. Lee, J. Seo, Y. Yang, H. Y. Lim, S. K. Kwak, G. Kim, H. Park, Adv. Mater. 2020, 32, 2001889.
- 55J. Xiang, Y. Ding, L. Du, J. Li, W. Wang, C. Zhao, Chin. Phys. B 2016, 25, 037308.
- 56Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu, Q. Yuan, L. Samad, X. Wang, Y. Wang, Z. Zhang, P. Zhang, X. Cao, B. Song, S. Jin, J. Am. Chem. Soc. 2016, 138, 7965.
- 57Z. Gao, Z. Ma, D. Lan, Z. Zhao, L. Zhang, H. Wu, Y. Hou, Adv. Funct. Mater. 2022, 32, 2112294.