Boosting Charge Transfer Via Heterostructure Engineering of Ti2CTx/Na2Ti3O7 Nanobelts Array for Superior Sodium Storage Performance
Wenqing Wang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorShu-ang He
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorZhe Cui
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorCorresponding Author
Qian Liu
College of Science, Donghua University, Shanghai, 201620 P. R. China
E-mail:[email protected][email protected]
Search for more papers by this authorMuk Fung Yuen
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172 P. R. China
Search for more papers by this authorJinqi Zhu
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorHao Wang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorMengluan Gao
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorWei Luo
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorJunqing Hu
College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 P. R. China
Search for more papers by this authorCorresponding Author
Rujia Zou
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
E-mail:[email protected][email protected]
Search for more papers by this authorWenqing Wang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorShu-ang He
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorZhe Cui
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorCorresponding Author
Qian Liu
College of Science, Donghua University, Shanghai, 201620 P. R. China
E-mail:[email protected][email protected]
Search for more papers by this authorMuk Fung Yuen
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172 P. R. China
Search for more papers by this authorJinqi Zhu
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorHao Wang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorMengluan Gao
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorWei Luo
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorJunqing Hu
College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 P. R. China
Search for more papers by this authorCorresponding Author
Rujia Zou
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
E-mail:[email protected][email protected]
Search for more papers by this authorAbstract
The poor conductivity, inert charge transmission efficiency, and irreversible Na+ trapping of Na2Ti3O7 result in retardant electrons/ions transportation and deficient sodium-ion storage efficiency, leading to sluggish reaction kinetics. To address these issues, an urchin-like Ti2CTx/Na2Ti3O7 (Ti2C/NTO) heterostructure sphere consisting of Ti2C/NTO heterostructure nanobelts array is developed via a facile one-step in situ hydrothermal strategy. The Ti2C/NTO heterostructure can obviously decrease Na+ diffusion barriers and increase electronic conductivity to improve reaction kinetics due to the built-in electric field effect and high-quantity interface region. In addition, the urchin-like vertically aligned nanobelts can reduce the diffusion distance of electrons and ions, provide favored electrolyte infiltration, adapt large volume expansion, and mitigate the aggregation to maintain structural stability during cycles, further enhancing the reaction kinetics. Furthermore, the Ti2C/NTO heterostructure can effectively suppress many unwanted side reactions between reactive surface sites of NTO and electrolyte as well as irreversible trapping of Na+. As a result, systematic electrochemical investigations demonstrate that the Ti2C/NTO heterostructure as an anode material for record sodium-ion storage delivers the highest reversible capacity, the best cycling stability with 0.0065% decay rate for 4500 cycles at 2.0 A g–1, and excellent rate capability of 172.1 mAh g–1 at 10.0 A g–1.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202203948-sup-0001-SuppMat.pdf3.8 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928.
- 2T. M. Gur, Energy Environ. Sci. 2018, 11, 3055.
- 3F. Yang, Y. N. Shen, Z. Cen, J. Wan, S. J. Li, G. J. He, J. Q. Hu, K. B. Xu, Sci. China Mater. 2022, 65, 356.
- 4M. Armand, J. M. Tarascon, Nature 2008, 451, 652.
- 5R. Schmuch, R. Wagner, G. Horpel, T. Placke, M. Winter, Nat. Energy 2018, 3, 267.
- 6J. Zhang, W. Lv, D. Q. Zheng, Q. H. Liang, D. W. Wang, F. Y. Kang, Q. H. Yang, Adv. Energy Mater. 2018, 8, 1702395.
- 7S. W. Kim, D. H. Seo, X. H. Ma, G. Ceder, K. Kang, Adv. Energy Mater. 2012, 2, 710.
- 8N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636.
- 9M. T. McDowell, S. W. Lee, W. D. Nix, Y. Cui, Adv. Mater. 2013, 25, 4966.
- 10P. Y. Wang, S. M. Sun, Y. Jiang, Q. Cai, Y. H. Zhang, L. M. Zhou, S. M. Fang, J. Liu, Y. Yu, ACS Nano 2020, 14, 15577.
- 11J. Y. Hwang, S. T. Myung, Y. K. Sun, Chem. Soc. Rev. 2017, 46, 3529.
- 12D. Luo, C. Y. Ma, J. F. Hou, Z. Zhang, R. F. Feng, L. X. Yang, X. W. Zhang, H. Lu, J. B. Liu, Y. B. Li, Y. G. Zhang, X. Wang, Z. W. Chen, Adv. Energy Mater. 2022, 12, 2103716.
- 13D. L. Chao, C. Ye, F. X. Xie, W. H. Zhou, Q. H. Zhang, Q. F. Gu, K. Davey, L. Gu, S. Z. Qiao, Adv. Mater. 2020, 32, 2001894.
- 14Z. Cui, S. A. He, Q. Liu, G. Q. Guan, W. L. Zhang, C. T. Xu, J. Q. Zhu, P. Feng, J. Q. Hu, R. J. Zou, M. F. Zhu, Adv. Sci. 2020, 7, 1903045.
- 15Y. H. Wan, K. M. Song, W. H. Chen, C. D. Qin, X. X. Zhang, J. Y. Zhang, H. L. Dai, Z. Hu, P. F. Yan, C. T. Liu, S. H. Sun, S. L. Chou, C. Y. Shen, Angew. Chem., Int. Ed. 2021, 60, 11481.
- 16Z. Y. Yuan, L. L. Wang, D. D. Li, J. M. Cao, W. Han, ACS Nano 2021, 15, 7439.
- 17S. A. He, Z. Cui, Q. Liu, G. J. He, D. J. L. Brett, W. Luo, R. J. Zou, M. F. Zhu, Small 2021, 17, 2104186.
- 18H. N. He, H. H. Zhang, D. Huang, W. Kuang, X. L. Li, J. N. Hao, Z. P. Guo, C. H. Zhang, Adv. Mater. 2022, 34, 2200397.
- 19J. F. Ni, S. D. Fu, C. Wu, Y. Zhao, J. Maier, Y. Yu, L. Li, Adv. Energy Mater. 2016, 6, 1502568.
- 20P. Senguttuvan, G. Rousse, V. Seznec, J. M. Tarascon, M. R. Palacín, Chem. Mater. 2011, 23, 4109.
- 21H. L. Pan, X. Lu, X. Q. Yu, Y. S. Hu, H. Li, X. Q. Yang, L. Q. Chen, Adv. Energy Mater. 2013, 3, 1186.
- 22Z. H. Li, W. Shen, C. Wang, Q. J. Xu, H. M. Liu, Y. G. Wang, Y. Y. Xia, J. Mater. Chem. A 2016, 4, 17111.
- 23Y. Zhang, G. Y. Li, J. M. Liu, T. Wang, X. Wang, B. Liu, Y. L. Liu, Q. S. Huo, Z. Y. Chu, J. Colloid Interface Sci. 2018, 528, 109.
- 24D. S. Liu, F. Jin, A. J. Huang, X. L. Sun, H. Su, Y. Yang, Y. F. Zhang, X. H. Rui, H. B. Geng, C. C. Li, Chem. - Eur. J. 2019, 25, 14881.
- 25F. X. Xie, L. Zhang, D. W. Su, M. T. Jaroniec, S. Z. Qiao, Adv. Mater. 2017, 29, 1700989.
- 26X. B. Zhong, F. Gao, C. He, P. Radjenovic, Z. Q. Tian, J. F. Li, J. Phys. Chem. C 2020, 124, 10845.
- 27Y. Z. Huang, X. Hu, J. W. Li, J. S. Zhang, D. P. Cai, B. S. Sa, H. B. Zhan, Z. H. Wen, Energy Storage Mater. 2020, 29, 121.
- 28M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, Adv. Mater. 2014, 26, 992.
- 29X. F. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, A. Yamada, Nat. Commun. 2015, 6, 6544.
- 30R. B. Rakhi, B. Ahmed, M. N. Hedhili, D. H. Anjum, H. N. Alshareef, Chem. Mater. 2015, 27, 5314.
- 31W. Z. Bao, L. Liu, C. Y. Wang, S. Choi, D. Wang, G. X. Wang, Adv. Energy Mater. 2018, 8, 1702485.
- 32Y. T. Liu, P. Zhang, N. Sun, B. Anasori, Q. Z. Zhu, H. Liu, Y. Gogotsi, B. Xu, Adv. Mater. 2018, 30, 1707334.
- 33W. Zhang, J. Peng, W. B. Hua, Y. Liu, J. S. Wang, Y. R. Liang, W. H. Lai, Y. Jiang, Y. Huang, W. Zhang, H. L. Yang, Y. G. Yang, L. N. Li, Z. J. Liu, L. Wang, S. L. Chou, Adv. Energy Mater. 2021, 11, 2100757.
- 34S. Zhu, C. D. Wang, H. W. Shou, P. J. Zhang, P. Wan, X. Guo, Z. Yu, W. J. Wang, S. M. Chen, W. S. Chu, L. Song, Adv. Mater. 2021, 34, 2108809.
- 35H. W. Zhang, O. Noonan, X. D. Huang, Y. N. Yang, C. Yu, L. Zhou, C. Z. Yu, ACS Nano 2016, 10, 4579.
- 36B. Anasori, M. R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2017, 2, 16098.
- 37T. F. Li, L. L. Yao, Q. L. Liu, J. J. Gu, R. C. Luo, J. H. Li, X. D. Yan, W. Q. Wang, P. Liu, B. Chen, W. Zhang, W. Abbas, R. Naz, D. Zhang, Angew. Chem., Int. Ed. 2018, 57, 6115.
- 38S. Y. Pang, Y. T. Wong, S. G. Yuan, Y. Liu, M. K. Tsang, Z. B. Yang, H. T. Huang, W. T. Wong, J. H. Hao, J. Am. Chem. Soc. 2019, 141, 9610.
- 39Q. M. Peng, J. X. Guo, Q. R. Zhang, J. Y. Xiang, B. Z. Liu, A. G. Zhou, R. P. Liu, Y. J. Tian, J. Am. Chem. Soc. 2014, 136, 4113.
- 40T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater. 1999, 11, 1307.
10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H CAS Web of Science® Google Scholar
- 41M. Singh, B. C. Yadav, U. Kumar, A. Ranjan, R. Srivastava, M. Kaur, Sens. Actuators, A 2020, 301, 111765.
- 42M. K. Han, X. W. Yin, X. L. Li, B. Anasori, L. T. Zhang, L. F. Cheng, Y. Gogotsi, ACS Appl. Mater. Interfaces 2017, 9, 20038.
- 43J. X. Li, Y. L. Du, C. X. Huo, S. Wang, C. Cui, Ceram. Int. 2015, 41, 2631.
- 44E. Morgado, M. A. S. de Abreu, G. T. Moure, B. A. Marinkovic, P. M. Jardim, A. S. Araujo, Chem. Mater. 2007, 19, 665.
- 45X. L. Li, M. Li, Q. Yang, D. H. Wang, L. T. Ma, G. J. Liang, Z. D. Huang, B. B. Dong, Q. Huang, C. Y. Zhi, Adv. Energy Mater. 2020, 10, 2001394.
- 46Y. F. Dong, Z. S. Wu, S. H. Zheng, X. H. Wang, J. Q. Qin, S. Wang, X. Y. Shi, X. H. Bao, ACS Nano 2017, 11, 4792.
- 47Z. M. Zhou, H. M. Xiao, F. Zhang, X. L. Zhang, Y. B. Tang, Electrochim. Acta 2016, 211, 430.
- 48G. Rousse, M. E. Arroyo-de, P. Senguttuvan, A. Ponrouch, J. M. Tarascon, M. R. Palacin, Chem. Mater. 2013, 25, 4946.
- 49J. Mei, T. T. Wang, D. C. Qi, J. J. Liu, T. Liao, Y. Yamauchi, Z. Q. Sun, ACS Nano 2021, 15, 13604.
- 50M. Huang, B. J. Xi, N. X. Shi, R. C. Wei, H. B. Li, J. K. Feng, S. L. Xiong, Small 2020, 16, 2001391.
- 51F. X. Xie, L. Zhang, Y. Jiao, A. Vasileff, D. L. Chao, S. Z. Qiao, J. Mater. Chem. A 2020, 8, 15829.
- 52N. N. Wang, X. Xu, T. Liao, Y. Du, Z. C. Bai, S. X. Dou, Adv. Mater. 2018, 30, 1804157.
- 53X. Sun, K. Tan, Y. Liu, J. Y. Zhang, L. R. Hou, C. Z. Yuan, Chin. Chem. Lett. 2020, 31, 2254.
- 54C. Zeng, F. X. Xie, X. F. Yang, M. Jaroniec, L. Zhang, S. Z. Qiao, Angew. Chem., Int. Ed. 2018, 57, 8540.
- 55S. Chen, Y. C. Pang, J. Liang, S. J. Ding, J. Mater. Chem. A 2018, 6, 13164.
- 56S. Y. Dong, L. F. Shen, H. S. Li, G. Pang, H. Dou, X. G. Zhang, Adv. Funct. Mater. 2016, 26, 3703.
- 57C. Y. Chen, Y. W. Wen, X. L. Hu, X. L. Ji, M. Y. Yan, L. Q. Mai, P. Hu, B. Shan, Y. H. Huang, Nat. Commun. 2015, 6, 6929.
- 58V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P. L. Taberna, S. H. Tolbert, H. D. Abruna, P. Simon, B. Dunn, Nat. Mater. 2013, 12, 518.
- 59T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn, Nat. Mater. 2010, 9, 146.
- 60J. Zhang, Y. C. Liu, H. Liu, Y. Z. Song, S. D. Sun, Q. Li, X. R. Xing, J. Chen, Small 2020, 16, 2000504.
- 61J. X. Wu, J. P. Liu, J. Cui, S. S. Yao, M. Ihsan-Ul-Haq, N. Mubarak, E. Quattrocchi, F. Ciucci, J. K. Kim, J. Mater. Chem. A 2020, 8, 2114.
- 62X. F. Lu, Q. H. Zhang, J. C. Liao, H. Y. Chen, Y. C. Fan, J. J. Xing, S. J. Gu, J. L. Huang, J. X. Ma, J. C. Wang, L. J. Wang, W. Jiang, Adv. Energy Mater. 2020, 10, 1902986.
- 63S. Yang, C. Liu, H. G. Li, S. L. Wang, J. Choi, L. Li, Energy Storage Mater. 2021, 39, 278.