Quench-Induced Surface Engineering Boosts Alkaline Freshwater and Seawater Oxygen Evolution Reaction of Porous NiCo2O4 Nanowires
Jin Yang
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300 P. R. China
Search for more papers by this authorYanan Wang
Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808 P. R. China
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorJie Yang
Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583 Singapore
Search for more papers by this authorCorresponding Author
Yajun Pang
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorXinqiang Zhu
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300 P. R. China
Search for more papers by this authorYinzhuo Lu
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300 P. R. China
Search for more papers by this authorYitian Wu
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300 P. R. China
Search for more papers by this authorJiajie Wang
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300 P. R. China
Search for more papers by this authorCorresponding Author
Hao Chen
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorZongkui Kou
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorZhehong Shen
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300 P. R. China
Search for more papers by this authorCorresponding Author
Zhenghui Pan
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574 Singapore
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
John Wang
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300 P. R. China
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574 Singapore
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorJin Yang
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300 P. R. China
Search for more papers by this authorYanan Wang
Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808 P. R. China
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorJie Yang
Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583 Singapore
Search for more papers by this authorCorresponding Author
Yajun Pang
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorXinqiang Zhu
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300 P. R. China
Search for more papers by this authorYinzhuo Lu
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300 P. R. China
Search for more papers by this authorYitian Wu
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300 P. R. China
Search for more papers by this authorJiajie Wang
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300 P. R. China
Search for more papers by this authorCorresponding Author
Hao Chen
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorZongkui Kou
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorZhehong Shen
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300 P. R. China
Search for more papers by this authorCorresponding Author
Zhenghui Pan
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574 Singapore
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
John Wang
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300 P. R. China
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574 Singapore
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The electrochemical oxygen evolution reaction (OER) by efficient catalysts is a crucial step for the conversion of renewable energy into hydrogen fuel, in which surface/near-surface engineering has been recognized as an effective strategy for enhancing the intrinsic activities of the OER electrocatalysts. Herein, a facile quenching approach is demonstrated that can simultaneously enable the required surface metal doping and vacancy generation in reconfiguring the desired surface of the NiCo2O4 catalyst, giving rise to greatly enhanced OER activities in both alkaline freshwater and seawater electrolytes. As a result, the quenched-engineered NiCo2O4 nanowire electrode achieves a current density of 10 mA cm−2 at a low overpotential of 258 mV in 1 m KOH electrolyte, showing the remarkable catalytic performance towards OER. More impressively, the same electrode also displays extraordinary activity in an alkaline seawater environment and only needs 293 mV to reach 10 mA cm−2. Density functional theory (DFT) calculations reveal the strong electronic synergies among the metal cations in the quench-derived catalyst, where the metal doping regulates the electronic structure, thereby yielding near-optimal adsorption energies for OER intermediates and giving rise to superior activity. This study provides a new quenching method to obtain high-performance transition metal oxide catalysts for freshwater/seawater electrocatalysis.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202106187-sup-0001-SuppMat.pdf2.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Li, Z. Zhang, R. Liu, Small 2020, 16, 2003777.
- 2Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou, J. M. V. Nsanzimana, C. Wang, Z. J. Xu, X. Wang, Nat. Energy 2019, 4, 329.
- 3L. Zhang, W. Cai, N. Bao, Adv. Mater. 2021, 33, 2100745.
- 4Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060.
- 5H. B. Tao, Y. Xu, X. Huang, J. Chen, L. Pei, J. Zhang, J. G. Chen, B. Liu, Joule 2019, 3, 1498.
- 6S. Ye, J. Wang, J. Hu, Z. Chen, L. Zheng, Y. Fu, Y. Lei, X. Ren, C. He, Q. Zhang, J. Liu, ACS Catal. 2021, 11, 6104.
- 7X. Gao, Y. Yu, Q. Liang, Y. Pang, L. Miao, X. Liu, Z. Kou, J. He, S. J. Pennycook, S. Mu, J. Wang, Appl. Catal., B 2020, 270, 118889.
- 8Y. Lei, T. Xu, S. Ye, L. Zheng, P. Liao, W. Xiong, J. Hu, Y. Wang, J. Wang, X. Ren, C. He, Q. Zhang, J. Liu, X. Sun, Appl. Catal., B 2021, 285, 119809.
- 9X. Wang, L. Zhuang, Y. Jia, H. Liu, X. Yan, L. Zhang, D. Yang, Z. Zhu, X. Yao, Angew. Chem., Int. Ed. 2018, 57, 16421.
- 10R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, Nat. Mater. 2012, 11, 550.
- 11H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S.-Z. Qiao, Chem. Rev. 2018, 118, 6337.
- 12X. H. Wang, Y. Ling, B. Wu, B. L. Li, X. L. Li, J. L. Lei, N. B. Li, H. Q. Luo, Nano Energy 2021, 87, 106160.
- 13Z. Kou, X. Li, L. Zhang, W. Zang, X. Gao, J. Wang, Small Sci. 2021, 1, 2100011.
- 14C. Xie, D. Yan, H. Li, S. Du, W. Chen, Y. Wang, Y. Zou, R. Chen, S. Wang, ACS Catal. 2020, 10, 11082.
- 15H. Zhang, A. W. Maijenburg, X. Li, S. L. Schweizer, R. B. Wehrspohn, Adv. Funct. Mater. 2020, 30, 2003261.
- 16B. You, M. T. Tang, C. Tsai, F. Abild-Pedersen, X. Zheng, H. Li, Adv. Mater. 2019, 31, 1807001.
- 17C. Yang, R. Zhao, H. Xiang, J. Wu, W. Zhong, W. Li, Q. Zhang, N. Yang, X. Li, Adv. Energy Mater. 2020, 10, 2002260.
- 18P. Zhang, C. Chen, M. Wang, D. Zheng, J. Chen, F. Li, X. Wu, K. Fan, L. Sun, ChemSusChem 2020, 13, 5067.
- 19H. Chen, X. Liang, Y. Liu, X. Ai, T. Asefa, X. Zou, Adv. Mater. 2020, 32, 2002435.
- 20L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, L. Dai, Angew. Chem., Int. Ed. 2016, 55, 5277.
- 21D. Wang, Chin. Chem. Lett. 2019, 13.
- 22H. Su, S. Song, S. Li, Y. Gao, L. Ge, W. Song, T. Ma, J. Liu, Appl. Catal., B 2021, 293, 120225.
- 23M. Su, Z. Pan, Y. Chong, C. Ye, X. Jin, Q. Wu, Z. Hu, D. Ye, G. I. N. Waterhouse, Y. Qiu, S. Yang, J. Mater. Chem. A 2021, 9, 3492.
- 24C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X. W. Lou, Adv. Funct. Mater. 2012, 22, 4592.
- 25Y. Qiu, W. Li, W. Zhao, G. Li, Y. Hou, M. Liu, L. Zhou, F. Ye, H. Li, Z. Wei, S. Yang, W. Duan, Y. Ye, J. Guo, Y. Zhang, Nano Lett. 2014, 14, 4821.
- 26N. Liu, Z. Pan, X. Ding, J. Yang, G. Xu, L. Li, Q. Wang, M. Liu, Y. Zhang, J. Energy Chem. 2020, 41, 209.
- 27J. Yin, P. Zhou, L. An, L. Huang, C. Shao, J. Wang, H. Liu, P. Xi, Nanoscale 2016, 8, 1390.
- 28Y. Gong, Z. Yang, Y. Lin, J. Wang, H. Pan, Z. Xu, J. Mater. Chem. A 2018, 6, 16950.
- 29J. Yin, J. Jin, H. Liu, B. Huang, M. Lu, J. Li, H. Liu, H. Zhang, Y. Peng, P. Xi, C. Yan, Adv. Mater. 2020, 32, 2001651.
- 30Z. Cai, D. Zhou, M. Wang, S.-M. Bak, Y. Wu, Z. Wu, Y. Tian, X. Xiong, Y. Li, W. Liu, S. Siahrostami, Y. Kuang, X.-Q. Yang, H. Duan, Z. Feng, H. Wang, X. Sun, Angew. Chem. 2018, 130, 9536.
10.1002/ange.201804881 Google Scholar
- 31W. Gao, W. Gou, Y. Ma, R. Wei, J. C. Ho, Y. Qu, ACS Appl. Energy Mater. 2019, 2, 5769.
- 32L. Shen, Q. Che, H. Li, X. Zhang, Adv. Funct. Mater. 2014, 24, 2630.
- 33B. Zhang, L. Wang, Z. Cao, S. M. Kozlov, F. P. García de Arquer, C. T. Dinh, J. Li, Z. Wang, X. Zheng, L. Zhang, Y. Wen, O. Voznyy, R. Comin, P. De Luna, T. Regier, W. Bi, E. E. Alp, C.-W. Pao, L. Zheng, Y. Hu, Y. Ji, Y. Li, Y. Zhang, L. Cavallo, H. Peng, E. H. Sargent, Nat. Catal. 2020, 3, 985.
- 34U. P. Suryawanshi, M. P. Suryawanshi, U. V. Ghorpade, M. He, D. Lee, S. W. Shin, J. H. Kim, ACS Appl. Energy Mater. 2020, 3, 4338.
- 35Z. Xiao, Y.-C. Huang, C.-L. Dong, C. Xie, Z. Liu, S. Du, W. Chen, D. Yan, L. Tao, Z. Shu, G. Zhang, H. Duan, Y. Wang, Y. Zou, R. Chen, S. Wang, J. Am. Chem. Soc. 2020, 142, 12087.
- 36J. Chen, H. Li, Z. Pei, Q. Huang, Z. Yuan, C. Wang, X. Liao, G. Henkelman, Y. Chen, L. Wei, J. Mater. Chem. A 2020, 8, 15951.
- 37J. Qu, Y. Ge, B. Zu, Y. Li, X. Dou, Small 2016, 12, 1369.
- 38Y. Zeng, H. Li, Y. Xia, L. Wang, K. Yin, Y. Wei, X. Liu, S. Luo, ACS Appl. Mater. Interfaces 2020, 12, 44608.
- 39X. Wang, C. Sun, F. He, E. Liu, C. He, C. Shi, J. Li, J. Sha, S. Ji, L. Ma, N. Zhao, ACS Appl. Mater. Interfaces 2019, 11, 32460.
- 40S. Anantharaj, S. Kundu, S. Noda, Nano Energy 2021, 80, 105514.
- 41T. Wu, S. Sun, J. Song, S. Xi, Y. Du, B. Chen, W. A. Sasangka, H. Liao, C. L. Gan, G. G. Scherer, L. Zeng, H. Wang, H. Li, A. Grimaud, Z. J. Xu, Nat. Catal. 2019, 2, 763.
- 42R. Chen, H.-Y. Wang, J. Miao, H. Yang, B. Liu, Nano Energy 2015, 11, 333.
- 43M. Yang, Y. Li, Y. Yu, X. Liu, Z. Shi, Y. Xing, Chem.-Eur. J. 2018, 24, 13002.
- 44K.-L. Yan, X. Shang, Z. Li, B. Dong, X. Li, W.-K. Gao, J.-Q. Chi, Y.-M. Chai, C.-G. Liu, Appl. Surf. Sci. 2017, 416, 371.
- 45S. Chen, S.-Z. Qiao, ACS Nano 2013, 7, 10190.
- 46X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang, Z. Lin, Angew. Chem., Int. Ed. 2016, 55, 6290.
- 47H. Park, B. H. Park, J. Choi, S. Kim, T. Kim, Y.-S. Youn, N. Son, J. H. Kim, M. Kang, Nanomaterials 2020, 10, 1727.
- 48J. H. Lin, Y. T. Yan, T. X. Xu, C. Q. Qu, J. Li, J. Cao, J. C. Feng, J. L. Qi, J. Colloid Interface Sci. 2020, 560, 34.
- 49C. Guan, X. Liu, W. Ren, X. Li, C. Cheng, J. Wang, Adv. Energy Mater. 2017, 7, 1602391.
- 50C. Zhu, S. Fu, D. Du, Y. Lin, Chem.-Eur. J. 2016, 22, 4000.
- 51L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang, C. Wu, Z. Qin, J. Bao, Y. Yu, S. Chen, Z. Ren, Nat. Commun. 2019, 10, 5106.
- 52S. Dresp, F. Dionigi, M. Klingenhof, P. Strasser, ACS Energy Lett. 2019, 4, 933.
- 53W. Tong, M. Forster, F. Dionigi, S. Dresp, R. Sadeghi Erami, P. Strasser, A. J. Cowan, P. Farràs, Nat. Energy 2020, 5, 367.
- 54S. Sun, X. Zhou, B. Cong, W. Hong, G. Chen, ACS Catal. 2020, 10, 9086.
- 55Y. Wang, X. Li, M. Zhang, Y. Zhou, D. Rao, C. Zhong, J. Zhang, X. Han, W. Hu, Y. Zhang, K. Zaghib, Y. Wang, Y. Deng, Adv. Mater. 2020, 32, 2000231.