Oxygen Reduction Activity of B←N-Containing Organic Molecule Affected by Asymmetric Regulation
Meilong Wang
State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorBingbing Wang
State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorWeichen Song
State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorXuchao Wang
Department of Environmental and Chemical Engineering, Tangshan University, Tangshan, 063000 P. R. China
Search for more papers by this authorXudong Peng
Department of Ophthalmology, University of Washington, 325 Ninth Ave, Box 359607, Seattle, WA, 98104 USA
Search for more papers by this authorCorresponding Author
Xiaojing Long
State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
E-mail: [email protected]
Search for more papers by this authorYanzhi Xia
State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorMeilong Wang
State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorBingbing Wang
State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorWeichen Song
State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorXuchao Wang
Department of Environmental and Chemical Engineering, Tangshan University, Tangshan, 063000 P. R. China
Search for more papers by this authorXudong Peng
Department of Ophthalmology, University of Washington, 325 Ninth Ave, Box 359607, Seattle, WA, 98104 USA
Search for more papers by this authorCorresponding Author
Xiaojing Long
State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
E-mail: [email protected]
Search for more papers by this authorYanzhi Xia
State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorAbstract
Organic molecular catalysts have received great attention as they have the merits of well-controlled molecular structures for the development of catalytic chemistry. Herein, the electronic distribution of active sites is regulated by asymmetrically introducing S-heterocycle on one side of the molecular core. As a result, the asymmetric as-PYT and as-BNT show higher oxygen reduction performance than their symmetric counterparts without (s-PY, s-PY2T) or with two S-heterocycle units (s-BN, s-BN2T). Density functional theory calculations reveal that the carbon atoms (site–12) at symmetric s-BN and s-BN2T are the catalytic active sites, while for asymmetric as-BNT, it has changed to amino-N atom (site-14). Due to the non-uniform charge distribution and increased dipole moment of as-BNT caused by asymmetric molecular configuration, the kinetics of catalytic reaction has changed significantly. The catalytically active sites of specific N atoms are further verified experimentally and theoretically by using sterically hindered phenyl groups. This work provides a simple but efficient method to design metal-free oxygen reduction electrocatalysts.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202105524-sup-0001-SuppMat.pdf3.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) R. Bashyam, P. Zelenay, Nature 2006, 443, 63; b) G. Wu, K. More, C. Johnston, P. Zelenay, Science 2011, 332, 443; c) Y. Jiao, Y. Zheng, M. Jaroniecb, S. Qiao, Chem. Soc. Rev. 2015, 44, 2060.
- 2a) W. Li, D. Wang, Y. Zhang, L. Tao, T. Wang, Y. Zou, Y. Wang, R. Chen, S. Wang, Adv. Mater. 2020, 32, 1907879.
- 3a) Y. Nie, L. Li, Z. Wei, Chem. Soc. Rev. 2015, 44, 2168; b) J. Zhang, Y. Yuan, L. Gao, G. Zeng, M. Li, H. Huang, Adv. Mater. 2021, 33, 2006494; c) A. Heeger, Chem. Rev. 2010, 39, 2354.
- 4a) C. Tang, Q. Zhang, Adv. Mater. 2017, 29, 1604103; b) F. Ando, T. Gunji, T. Tanabe, I. Fukano, H. D. Abruña, J. Wu, T. Ohsaka, F. Matsumoto, ACS Catal. 2021, 11, 9317.
- 5a) D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science 2016, 351, 361; b) H. Wang, Y. Shao, S. Mei, Y. Lu, M. Zhang, J. Sun, K. Matyjaszewski, M. Antonietti, J. Yuan, Chem. Rev. 2020, 17, 9363; c) J. Zhang, L. Dai, ACS Catal. 2015, 5, 7244.
- 6a) Q. Cheng, C. Hu, G. Wang, Z. Zou, H. Yang, L. Dai, J. Am. Chem. Soc. 2020, 142, 5594; b) Y. Jia, K. Jiang, H. Wang, X. Yao, Chem. 2019, 5, 1371; c) Y. Jia1, L. Zhang, L. Zhuang, H. Liu, X. Yan, X. Wang, J. Liu, J. Wang, Y. Zheng, Z. Xiao, E. Taran, J. Chen, D. Yang, Z. Zhu, S. Wang, L. Dai, X. Yao, Nat. Catal. 2019, 2, 688; d) X. Yan, Y. Jia, X. Yao, Chem. Soc. Rev. 2018, 47, 7628.
- 7a) H. Yu, L. Shang, T. Bian, R. Shi, G. Waterhouse, Y. Zhao, C. Zhou, L. Wu, C. Tung, T. Zhang, Adv. Mater. 2016, 28, 5080; b) G. Chen, P. Liu, Z. Liao, F. Sun, Y. He, H. Zhong, T. Zhang, E. Zschech, M. Chen, G. Wu, J. Zhang, X. Feng, Adv. Mater. 2020, 32, 1907399; c) J. Li, L. Jiao, E. Wegener, L. Richard, E. Liu, A. Zitolo, M. Sougrati, S. Mukerjee, Z. Zhao, Y. Huang, F. Yang, S. Zhong, H. Xu, A. Kropf, F. Jaouen, D. Myers, ́ Q. Jia, J. Am. Chem. Soc. 2020, 142, 1417.
- 8a) S. Singh, K. Takeyasu, J. Nakamura, Adv. Mater. 2019, 31, 1804297; b) Y. Jiao, Y. Zheng, M. Jaroniec, S. Qiao, J. Am. Chem. Soc. 2014, 136, 4394; c) L. Huang, X. Zheng, G. Gao, H. Zhang, K. Rong, J. Chen, Y. Liu, X. Zhu, W. Wu, Y. Wang, J. Wang, S. Dong, J. Am. Chem. Soc. 2021, 143, 6933; d) K. Matsumoto, A. Onoda, T. Kitano, T. Sakata, H. Yasuda, S. Campidelli, T. Hayashi, ACS Appl. Mater. Interfaces 2021, 13, 15101.
- 9a) D. Li, C. Li, L. Zhang, H. Li, L. Zhu, D. Yang, Q. Fang, S. Qiu, X. Yao, J. Am. Chem. Soc. 2020, 142, 8104;
b) J. Guo, C. Lin, Z. Xia, Z. Xiang, Angew. Chem., Int. Ed. 2018, 130, 12747;
10.1002/ange.201808226 Google Scholarc) S. Wang, D. Yu, L. Dai, J. Am. Chem. Soc. 2011, 133, 5182; d) Z. Zhang, Y. Zhu, X. Chen, H. Zhang, J. Wang, Adv. Mater. 2018, 31, 1806626; e) X. Long, D. Li, B. Wang, Z. Jiang, W. Xu, B. Wang, D. Yang, Y. Xia, Angew. Chem., Int. Ed. 2019, 58, 11369.
- 10a) A. Kulkarni, S. Siahrostami, A. Patel, J. Nørskov, Chem. Rev. 2018, 118, 2302; b) X. Wang, A. Vasileff, Y. Jiao, Y. Zheng, S. Qiao, Adv. Mater. 2019, 31, 1803625.
- 11a) W. Liu, X. Xu, J. Yuan, M. Leclerc, Y. Zou, Y. Li, ACS Energy Lett. 2021, 6, 598; b) J. Liu, B. Walker, A. Tamayo, Y. Zhang, T. Nguyen, Adv. Funct. Mater. 2013, 23, 47; c) W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, J. Am. Chem. Soc. 2017, 139, 7148.
- 12a) R. Miao, J. He, S. Sahoo, Z. Luo, W. Zhong, S.-Y. Chen, C. Guild, T. Jafari, B. Dutta, S. Cetegen, M. Wang, S. Alpay, S. Suib, ACS Catal. 2017, 7, 819; b) H. Wu, S. Li, Y. Shao, X. Jin, X. Qi, J. Yang, Z. Zhou, Y. Wang, Chem. Eng. J. 2020, 379, 122373; c) F. Oztuna, T. Beyazay, U. Unal, J. Phys. Chem. C 2019, 123, 28131.
- 13a) X. Long, Z. Ding, C. Dou, J. Zhang, J. Liu, L. Wang, Adv. Mater. 2016, 28, 6504;
b) C. Dou, X. Long, Z. Ding, Z. Xie, J. Liu, L. Wang, Angew. Chem., Int. Ed. 2016, 128, 1458.
10.1002/ange.201508482 Google Scholar
- 14a) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257; b) R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724.
- 15R. Kahan, W. Hirunpinyopas, J. Cid, M. Ingleson, R. Dryfe, Chem. Mater. 2019, 31, 1891.
- 16G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 17R. Li, Z. Wei, X. Gou, ACS Catal. 2015, 5, 4133.
- 18M. B. Zakaria, C. Li, Q. Ji, B. Jiang, S. Tominaka, Y. Ide, J. P. Hill, K. Ariga, Y. Yamauchi, Angew. Chem., Int. Ed. 2016, 55, 8426.
- 19W. Gao, M. Zhang, T. Liu, R. Ming, Q. An, K. Wu, D. Xie, Z. Luo, C. Zhong, F. Liu, F. Zhang, H. Yan, C. Yang, Adv. Mater. 2018, 30, 1800052.
- 20W. Zhou, T. Jia, D. Zhang, Z. Zheng, W. Hong, X. Chen, Appl. Catal., B 2019, 259, 118067.