Lithiophilic Carbon Nanofiber/Graphene Nanosheet Composite Scaffold Prepared by a Scalable and Controllable Biofabrication Method for Ultrastable Dendrite-Free Lithium-Metal Anodes
Zongmin Hu
School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorHai Su
School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorMengfan Zhou
School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorJinzhi Liu
Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013 China
Search for more papers by this authorCorresponding Author
Yizao Wan
Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jimin Hu
College of Chemistry, Nankai University, Tianjin, 300071 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yunhua Xu
School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZongmin Hu
School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorHai Su
School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorMengfan Zhou
School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorJinzhi Liu
Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013 China
Search for more papers by this authorCorresponding Author
Yizao Wan
Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jimin Hu
College of Chemistry, Nankai University, Tianjin, 300071 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yunhua Xu
School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Li metal is regarded as a promising anode for high-energy-density Li batteries, while the limited cycle life and fast capacity decay caused by notorious Li dendrite growth seriously impedes its application. Herein, a robust and highly lithiophilic bacterial cellulose-derived carbon nanofiber@reduced graphene oxide nanosheet (BC-CNF@rGO) composite scaffold is fabricated as a host for dendrite-free Li metal anode through an in situ biofabrication method. The abundant lithiophilic functional groups, conductive 3D network, and excellent mechanical property can effectively regulate uniform Li nucleation and deposition, enable fast reaction kinetics, and alleviate volume change. As a result, the BC-CNF@rGO skeleton achieves exceptional Li plating/stripping performance with a high average Coulombic efficiency of 98.3% over 800 cycles, and a long cycle life span of 5000 h at 2 mA cm−2@1 mAh cm−2 with a low overpotential of ≈15 mV for lithium plating. Furthermore, full cells coupling BC-CNF@rGO-Li anode with LiFePO4 cathode achieves an unprecedented cycling stability with a long cycle life of 3000 cycles at 1 C. This work sheds light on a promising material design and fabrication strategy for realizing high performance Li metal batteries.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202104735-sup-0001-SuppMat.pdf954.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) S. Chu, Y. Cui, N. Liu, Nat. Mater. 2016, 16, 16; b) M. Winter, B. Barnett, K. Xu, Chem. Rev. 2018, 118, 11433; c) D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194.
- 2a) M. D. Tikekar, S. Choudhury, Z. Tu, L. A. Archer, Nat. Energy 2016, 1, 16114; b) X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403; c) J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, J.-G. Zhang, Nat. Energy 2019, 4, 180.
- 3a) R. Zhang, X. Chen, X. Shen, X.-Q. Zhang, X.-R. Chen, X.-B. Cheng, C. Yan, C.-Z. Zhao, Q. Zhang, Joule 2018, 2, 764; b) S. Jin, Y. Ye, Y. Niu, Y. Xu, H. Jin, J. Wang, Z. Sun, A. Cao, X. Wu, Y. Luo, H. Ji, L.-J. Wan, J. Am. Chem. Soc. 2020, 142, 8818; c) Z. Liang, D. Lin, J. Zhao, Z. Lu, Y. Liu, C. Liu, Y. Lu, H. Wang, K. Yan, X. Tao, Y. Cui, Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 2862.
- 4a) N.-W. Li, Y.-X. Yin, C.-P. Yang, Y.-G. Guo, Adv. Mater. 2016, 28, 1853; b) X. Liang, Q. Pang, I. R. Kochetkov, M. S. Sempere, H. Huang, X. Sun, L. F. Nazar, Nat. Energy 2017, 2, 17119; c) A. Basile, A. I. Bhatt, A. P. O'Mullane, Nat. Commun. 2016, 7, 11794; d) A. Hu, W. Chen, X. Du, Y. Hu, T. Lei, H. Wang, L. Xue, Y. Li, H. Sun, Y. Yan, J. Long, C. Shu, J. Zhu, B. Li, X. Wang, J. Xiong, Energy Environ. Sci. 2021, 14, 4115.
- 5a) J. Liang, X. Li, Y. Zhao, L. V. Goncharova, W. Li, K. R. Adair, M. N. Banis, Y. Hu, T.-K. Sham, H. Huang, L. Zhang, S. Zhao, S. Lu, R. Li, X. Sun, Adv. Energy Mater. 2019, 9, 1902125; b) X. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, C. Wang, Sci. Adv. 2018, 4, eaau9245; c) X. Zhang, S. Wang, C. Xue, C. Xin, Y. Lin, Y. Shen, L. Li, C.-W. Nan, Adv. Mater. 2019, 31, 1806082; d) G. Lu, Z. Dong, W. Liu, X. Jiang, Z. Yang, Q. Liu, X. Yang, D. Wu, Z. Li, Q. Zhao, X. Hu, C. Xu, F. Pan, Sci. Bull. 2021, 66, 1746.
- 6a) L. Suo, Y.-S. Hu, H. Li, M. Armand, L. Chen, Nat. Commun. 2013, 4, 1481; b) H. Sun, G. Zhu, Y. Zhu, M.-C. Lin, H. Chen, Y.-Y. Li, W. H. Hung, B. Zhou, X. Wang, Y. Bai, M. Gu, C.-L. Huang, H.-C. Tai, X. Xu, M. Angell, J.-J. Shyue, H. Dai, Adv. Mater. 2020, 32, 2001741; c) S. Chen, J. Zheng, D. Mei, K. S. Han, M. H. Engelhard, W. Zhao, W. Xu, J. Liu, J.-G. Zhang, Adv. Mater. 2018, 30, 1706102; d) Z. Jiang, Z. Zeng, X. Liang, L. Yang, W. Hu, C. Zhang, Z. Han, J. Feng, J. Xie, Adv. Funct. Mater. 2020, 31, 2005991; e) X. Zheng, L. Huang, W. Luo, H. Wang, Y. Dai, X. Liu, Z. Wang, H. Zheng, Y. Huang, ACS Energy Lett. 2021, 6, 2054.
- 7a) C. Yan, Y.-X. Yao, X. Chen, X.-B. Cheng, X.-Q. Zhang, J.-Q. Huang, Q. Zhang, Angew. Chem., Int. Ed. 2018, 57, 14055; b) W. Zhang, Q. Wu, J. Huang, L. Fan, Z. Shen, Y. He, Q. Feng, G. Zhu, Y. Lu, Adv. Mater. 2020, 32, 2001740; c) H. Yang, X. Chen, N. Yao, N. Piao, Z. Wang, K. He, H.-M. Cheng, F. Li, ACS Energy Lett. 2021, 6, 1413; d) Q. Wang, C. Yang, J. Yang, K. Wu, C. Hu, J. Lu, W. Liu, X. Sun, J. Qiu, H. Zhou, Adv. Mater. 2019, 31, 1903248; e) K. Huang, S. Bi, B. Kurt, C. Xu, L. Wu, Z. Li, G. Feng, X. Zhang, Angew. Chem., Int. Ed. 2021, 60, 19232.
- 8a) S. Liu, X. Xia, Y. Zhong, S. Deng, Z. Yao, L. Zhang, X.-B. Cheng, X. Wang, Q. Zhang, J. Tu, Adv. Energy Mater. 2018, 8, 1702322; b) L.-L. Lu, J. Ge, J.-N. Yang, S.-M. Chen, H.-B. Yao, F. Zhou, S.-H. Yu, Nano Lett. 2016, 16, 4431.
- 9a) Q. Li, S. Zhu, Y. Lu, Adv. Funct. Mater. 2017, 27, 1606422; b) K. Huang, Z. Li, Q. Xu, H. Liu, H. Li, Y. Wang, Adv. Energy Mater. 2019, 9, 1900853; c) H. Lin, Z. Zhang, Y. Wang, X. L. Zhang, Z. Tie, Z. Jin, Adv. Funct. Mater. 2021, 31, 2102735.
- 10a) T.-T. Zuo, X.-W. Wu, C.-P. Yang, Y.-X. Yin, H. Ye, N.-W. Li, Y.-G. Guo, Adv. Mater. 2017, 29, 1700389; b) A. M. Hafez, Y. Jiao, J. Shi, Y. Ma, D. Cao, Y. Liu, H. Zhu, Adv. Mater. 2018, 30, 1802156.
- 11a) H. Shi, M. Yue, C. J. Zhang, Y. Dong, P. Lu, S. Zheng, H. Huang, J. Chen, P. Wen, Z. Xu, Q. Zheng, X. Li, Y. Yu, Z.-S. Wu, ACS Nano 2020, 14, 8678; b) D. Zhang, S. Wang, B. Li, Y. Gong, S. Yang, Adv. Mater. 2019, 31, 1901820.
- 12G. Zheng, S. W. Lee, Z. Liang, H.-W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu, Y. Cui, Nat. Nanotechnol. 2014, 9, 618.
- 13Q. Song, H. Yan, K. Liu, K. Xie, W. Li, W. Gai, G. Chen, H. Li, C. Shen, Q. Fu, S. Zhang, L. Zhang, B. Wei, Adv. Energy Mater. 2018, 8, 1800564.
- 14a) Z. Lu, Q. Liang, B. Wang, Y. Tao, Y. Zhao, W. Lv, D. Liu, C. Zhang, Z. Weng, J. Liang, H. Li, Q.-H. Yang, Adv. Energy Mater. 2019, 9, 1803186; b) Y. Xu, T. Li, L. Wang, Y. Kang, Adv. Mater. 2019, 31, 1901662.
- 15a) L. Luo, J. Li, H. Y. Asl, A. Manthiram, Adv. Mater. 2019, 31, 1904537; b) G. Jiang, N. Jiang, N. Zheng, X. Chen, J. Mao, G. Ding, Y. Li, F. Sun, Y. Li, Energy Storage Mater. 2019, 23, 181.
- 16a) X. Chen, X.-R. Chen, T.-Z. Hou, B.-Q. Li, X.-B. Cheng, R. Zhang, Q. Zhang, Sci. Adv. 2019, 5, eaau7728; b) R. Zhang, X.-R. Chen, X. Chen, X.-B. Cheng, X.-Q. Zhang, C. Yan, Q. Zhang, Angew. Chem., Int. Ed. 2017, 56, 7764; c) L. Wang, H. Wang, M. Cheng, Y. Hong, M. Li, H. Su, J. Sun, J. Wang, Y. Xu, ACS Appl. Energy Mater. 2021, 4, 6245.
- 17a) D. Lin, Y. Liu, Z. Liang, H.-W. Lee, J. Sun, H. Wang, K. Yan, J. Xie, Y. Cui, Nat. Nanotechnol. 2016, 11, 626. b) H. Shi, J. Qin, K. Huang, P. Lu, C. Zhang, Y. Dong, M. Ye, Z. Liu, Z.-S. Wu, Angew. Chem., Int. Ed. 2020, 59, 12147.
- 18S. Liu, A. Wang, Q. Li, J. Wu, K. Chiou, J. Huang, J. Luo, Joule 2018, 2, 184.
- 19R. Zhang, X.-B. Cheng, C.-Z. Zhao, H.-J. Peng, J.-L. Shi, J.-Q. Huang, J. Wang, F. Wei, Q. Zhang, Adv. Mater. 2016, 28, 2155.
- 20a) Y. Xu, K. Wang, J. Han, C. Liu, Y. An, Q. Meng, C. Li, X. Zhang, X. Sun, Y. Zhang, L. Mao, Z. Wei, Y. Ma, Adv. Mater. 2020, 32, 2005531; b) S. Tu, H. Su, D. Sui, Y. He, M. Cheng, P. Bai, C. Zhang, P. Sun, C. Wang, J. Jiang, Y. Xu, Energy Storage Mater. 2021, 35, 602; c) X. Zhao, F. Chen, J. Liu, M. Cheng, H. Su, J. Liu, Y. Xu, J. Mater. Chem. A 2020, 8, 5671.
- 21K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, Y. Cui, Nat. Energy 2016, 1, 16010.
- 22a) L. Liu, Y.-X. Yin, J.-Y. Li, S.-H. Wang, Y.-G. Guo, L.-J. Wan, Adv. Mater. 2018, 30, 1706216; b) K. Lin, X. Qin, M. Liu, X. Xu, G. Liang, J. Wu, F. Kang, G. Chen, B. Li, Adv. Funct. Mater. 2019, 29, 1903229; c) J. Wu, Z. Rao, X. Liu, Y. Shen, L. Yuan, Z. Li, X. Xie, Y. Huang, Adv. Funct. Mater. 2020, 31, 2009961; d) L. Fan, S. Li, L. Liu, W. Zhang, L. Gao, Y. Fu, F. Chen, J. Li, H. L. Zhuang, Y. Lu, Adv. Energy Mater. 2018, 8, 1802350; e) P. Zhai, T. Wang, H. Jiang, J. Wan, Y. Wei, L. Wang, W. Liu, Q. Chen, W. Yang, Y. Cui, Y. Gong, Adv. Mater. 2021, 33, 2006247; f) J. Li, P. Zou, S. W. Chiang, W. Yao, Y. Wang, P. Liu, C. Liang, F. Kang, C. Yang, Energy Storage Mater. 2020, 24, 700; g) P. Zou, Y. Wang, S.-W. Chiang, X. Wang, F. Kang, C. Yang, Nat. Commun. 2018, 9, 464; h) J. Yi, J. Chen, Z. Yang, Y. Dai, W. Li, J. Cui, F. Ciucci, Z. Lu, C. Yang, Adv. Energy Mater. 2019, 9, 1901796; i) X. Gao, X. Yang, K. Adair, X. Li, J. Liang, Q. Sun, Y. Zhao, R. Li, T.-K. Sham, X. Sun, Adv. Energy Mater. 2020, 10, 1903753; j) M. Cheng, H. Su, P. Xiong, X. Zhao, Y. Xu, ACS Appl. Energy Mater. 2019, 2, 8303.
- 23a) H. Luo, P. Xiong, J. Xie, Z. Yang, Y. Huang, J. Hu, Y. Wan, Y. Xu, Adv. Funct. Mater. 2018, 28, 1803075; b) M. Zhou, W. Qi, Z. Hu, M. Cheng, X. Zhao, P. Xiong, H. Su, M. Li, J. Hu, Y. Xu, ACS Appl. Mater. Interfaces 2021, 13, 17629.