Tracking Confined Reaction Based on Host–Guest Interaction Using Single-Molecule Conductance Measurement
Saisai Yuan
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorQiaozan Qian
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorYu Zhou
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorShiqiang Zhao
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorLuchun Lin
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorPing Duan
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorXinghai Xu
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorJie Shi
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorWei Xu
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorAnni Feng
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorJia Shi
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Yang Yang
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wenjing Hong
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorSaisai Yuan
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorQiaozan Qian
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorYu Zhou
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorShiqiang Zhao
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorLuchun Lin
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorPing Duan
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorXinghai Xu
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorJie Shi
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorWei Xu
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorAnni Feng
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorJia Shi
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Yang Yang
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wenjing Hong
State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The host–guest interaction acts as an essential part of supramolecular chemistry, which can be applied in confined reaction. However, it is challenging to obtain the dynamic process during confined reactions below micromolar concentrations. In this work, a new method is provided to characterize the dimerization process of the guest 1,2-bis(4-pyridinyl) ethylene in host cucurbit[8]curil using scanning tunneling microscope-break junction (STM-BJ) technique. The guest reaction kinetics is quantitatively by nuclear magnetic resonance (NMR) and in situ single-molecule junctions. It is found that in the single-molecule conductance measurements, the electrical signals of the reactants with a concentration as low as 5 × 10−6 m are clearly detected, and the reaction kinetics at micromolar concentrations are further obtained. However, in NMR measurements, the characteristic peak signal of the reactants is undetectable when the concentration of the reactants is lower than 0.5 × 10−3 m and it cannot be quantified. In addition, the strong electric field from the nanogap accelerates the reaction. This work reveals that single-molecule STM-BJ techniques are more sensitive for tracking confined reactions than that by NMR techniques and can be used to study effect of extremely strong electric field on kinetics.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202104554-sup-0001-SuppMat.pdf2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Schenning, C. M. W. Bastiaansen, D. J. Broer, M. G. Debije, Chim. Oggi-Chem. Today 2014, 32, 78.
- 2A. Credi, B. Ferrer Ribera, M. Venturi, Electrochim. Acta 2004, 49, 3865.
- 3Y. Li, T. Zhao, C. Wang, Z. Lin, G. Huang, B. D. Sumer, J. Gao, Nat. Commun. 2016, 7, 13777.
- 4G. Huber, F.-X. Legrand, V. Lewin, D. Baumann, M.-P. Heck, P. Berthault, ChemPhysChem 2011, 12, 1053.
- 5S. Zarra, M. M. J. Smulders, Q. Lefebvre, J. K. Clegg, J. R. Nitschke, Angew. Chem., Int. Ed. 2012, 51, 6882.
- 6Y. Jiao, B. Tang, Y. Zhang, J.-F. Xu, Z. Wang, X. Zhang, Angew. Chem., Int. Ed. 2018, 57, 6077.
- 7J. Zhang, J. Liu, Z. Yu, S. Chen, O. A. Scherman, C. Abell, Adv. Funct. Mater. 2018, 28, 1800550.
- 8R. Dong, Y. Liu, Y. Zhou, D. Yan, X. Zhu, Polym. Chem. 2011, 2, 2771.
- 9M. Wei, M. Pu, J. Guo, J. Han, F. Li, J. He, D. G. Evans, X. Duan, Chem. Mater. 2008, 20, 5169.
- 10H. Dong, X. Liu, H. Yang, J. Zhao, Y. Zheng, ACS Appl. Bio Mater. 2021, 4, 1950.
- 11Y. Liu, R. Fang, X. Tan, Z. Wang, X. Zhang, Chem. - Eur. J. 2012, 18, 15650.
- 12K. Seo, I. Eom, S. Shim, C. H. Kim, T. Joo, Bull. Korean Chem. Soc. 2019, 40, 352.
- 13S. Yue, W. Ye, Z. Xu, Analyst 2019, 144, 5882.
- 14B. Xu, N. J. Tao, Science 2003, 301, 1221.
- 15W. J. Hong, D. Z. Manrique, P. Moreno-Garcia, M. Gulcur, A. Mishchenko, C. J. Lambert, M. R. Bryce, T. Wandlowski, J. Am. Chem. Soc. 2012, 134, 2292.
- 16Y.-H. Wang, F. Yan, D.-F. Li, Y.-F. Xi, R. Cao, J.-F. Zheng, Y. Shao, S. Jin, J.-Z. Chen, X.-S. Zhou, J. Phys. Chem. Lett. 2021, 12, 758.
- 17B.-F. Zeng, G. Wang, Q.-Z. Qian, Z.-X. Chen, X.-G. Zhang, Z.-X. Lu, S.-Q. Zhao, A.-N. Feng, J. Shi, Y. Yang, W. Hong, Small 2020, 16, 2004720.
- 18C. Zhan, G. Wang, X.-G. Zhang, Z.-H. Li, J.-Y. Wei, Y. Si, Y. Yang, W. Hong, Z.-Q. Tian, Angew. Chem., Int. Ed. 2019, 58, 14534.
- 19S. Zhao, Q. Wu, J. Pi, J. Liu, J. Zheng, S. Hou, J. Wei, R. Li, H. Sadeghi, Y. Yang, J. Shi, Z. Chen, Z. Xiao, C. Lambert, W. Hong, Sci. Adv. 2020, 6, eaba6714.
- 20J. Zheng, J. Liu, Y. Zhuo, R. Li, X. Jin, Y. Yang, Z.-B. Chen, J. Shi, Z. Xiao, W. Hong, Z.-q. Tian, Chem. Sci. 2018, 9, 5033.
- 21B. F. Zeng, G. Wang, Q. Z. Qian, Z. X. Chen, X. G. Zhang, Z. X. Lu, S. Q. Zhao, A. N. Feng, J. Shi, Y. Yang, W. Hong, Small 2020, 16, 2004720.
- 22Y. Li, J. M. Artés, B. Demir, S. Gokce, H. M. Mohammad, M. Alangari, M. P. Anantram, E. E. Oren, J. Hihath, Nat. Nanotechnol. 2018, 13, 1167.
- 23R. Almughathawi, S. Hou, Q. Wu, Z. Liu, W. Hong, C. Lambert, ACS Sens. 2021, 6, 470.
- 24E. von Harbou, R. Behrens, J. Berje, A. Brächer, H. Hasse, Chem. Ing. Tech. 2017, 89, 369.
- 25D. Svatunek, G. Eilenberger, C. Denk, D. Lumpi, C. Hametner, G. Allmaier, H. Mikula, Chem.- Eur. J. 2020, 26, 9851.
- 26X. Huang, C. Tang, J. Li, L.-C. Chen, J. Zheng, P. Zhang, J. Le, R. Li, X. Li, J. Liu, Y. Yang, J. Shi, Z. Chen, M. Bai, H.-L. Zhang, H. Xia, J. Cheng, Z.-Q. Tian, W. Hong, Sci. Adv. 2019, 5, eaaw3072.
- 27A. C. Aragones, N. L. Haworth, N. Darwish, S. Ciampi, N. J. Bloomfield, G. G. Wallace, I. Diez-Perez, M. L. Coote, Nature 2016, 531, 88.
- 28C. Huang, M. Jevric, A. Borges, S. T. Olsen, J. M. Hamill, J.-T. Zheng, Y. Yang, A. Rudnev, M. Baghernejad, P. Broekmann, A. U. Petersen, T. Wandlowski, K. V. Mikkelsen, G. C. Solomon, M. Brøndsted Nielsen, W. Hong, Nat. Commun. 2017, 8, 15436.
- 29H. Li, T. A. Su, V. Zhang, M. L. Steigerwald, C. Nuckolls, L. Venkataraman, J. Am. Chem. Soc. 2015, 137, 5028.
- 30L. Zhang, E. Laborda, N. Darwish, B. B. Noble, J. H. Tyrell, S. Pluczyk, A. P. Le Brun, G. G. Wallace, J. Gonzalez, M. L. Coote, S. Ciampi, J. Am. Chem. Soc. 2018, 140, 766.
- 31Y. Zang, Q. Zou, T. Fu, F. Ng, B. Fowler, J. Yang, H. Li, M. L. Steigerwald, C. Nuckolls, L. Venkataraman, Nat. Commun. 2019, 10, 4482.
- 32Y. Zang, I. Stone, M. S. Inkpen, F. Ng, T. H. Lambert, C. Nuckolls, M. L. Steigerwald, X. Roy, L. Venkataraman, Angew. Chem., Int. Ed. Engl. 2019, 58, 16008.
- 33C. Jia, A. Migliore, N. Xin, S. Huang, J. Wang, Q. Yang, S. Wang, H. Chen, D. Wang, B. Feng, Z. Liu, G. Zhang, D. H. Qu, H. Tian, M. A. Ratner, H. Q. Xu, A. Nitzan, X. Guo, Science 2016, 352, 1443.
- 34T. Nishino, N. Hayashi, P. T. Bui, J. Am. Chem. Soc. 2013, 135, 4592.
- 35A. Vezzoli, I. Grace, C. Brooke, K. Wang, C. J. Lambert, B. Xu, R. J. Nichols, S. J. Higgins, Nanoscale 2015, 7, 18949.
- 36R. García, M. Herranz, E. Leary, M. T. González, G. Bollinger, M. Bürkle, L. Zotti, Y. Asai, F. Pauly, J. Cuevas, N. Agraït, N. Martin, J. Org. Chem. 2015, 2015, 1068.
- 37W. Zhang, S. Gan, A. Vezzoli, R. J. Davidson, D. C. Milan, K. V. Luzyanin, S. J. Higgins, R. J. Nichols, A. Beeby, P. J. Low, B. Li, L. Niu, ACS Nano 2016, 10, 5212.
- 38Z. Walsh-Korb, Y. Yu, E.-R. Janeček, Y. Lan, J. del Barrio, P. E. Williams, X. Zhang, O. A. Scherman, Langmuir 2017, 33, 1343.
- 39B. Xiao, F. Liang, S. Liu, J. Im, Y. Li, J. Liu, B. Zhang, J. Zhou, J. He, S. Chang, Nanotechnology 2018, 29, 365501.
- 40M. Huang, M. Sun, X. Yu, S. He, S. Liu, W. M. Nau, Y. Li, T. Wu, Y. Wang, S. Chang, J. He, J. Phys. Chem. C 2020, 124, 16143.
- 41H. Wen, W. Li, J. Chen, G. He, L. Li, M. A. Olson, A. C. H. Sue, J. F. Stoddart, X. Guo, Sci. Adv. 2016, 2, e1601113.
- 42L. Lin, C. Tang, G. Dong, Z. Chen, Z. Pan, J. Liu, Y. Yang, J. Shi, R. Ji, W. Hong, J. Phys. Chem. C 2021, 125, 3623.
- 43X. Li, Q. Wu, J. Bai, S. Hou, W. Jiang, C. Tang, H. Song, X. Huang, J. Zheng, Y. Yang, J. Liu, Y. Hu, J. Shi, Z. Liu, C. J. Lambert, D. Zhang, W. Hong, Angew. Chem., Int. Ed. Engl. 2020, 59, 3280.
- 44P. Cintas, J. Inclusion Phenom. Mol. Recognit. Chem. 1994, 17, 205.
- 45M. Kiguchi, S. Nakashima, T. Tada, S. Watanabe, S. Tsuda, Y. Tsuji, J. Terao, Small 2012, 8, 726.
- 46Z. Sun, J. Comput.-Aided Mol. Des. 2021, 35, 105.
- 47C. Goehry, M. Besora, F. Maseras, ACS Catal. 2015, 5, 2445.
- 48V. Zoete, M. Meuwly, M. Karplus, Proteins 2005, 61, 79.
- 49L. Sun, Y. A. Diaz-Fernandez, T. A. Gschneidtner, F. Westerlund, S. Lara-Avila, K. Moth-Poulsen, Chem. Soc. Rev. 2014, 43, 7378.
- 50N. Ferri, N. Algethami, A. Vezzoli, S. Sangtarash, M. McLaughlin, H. Sadeghi, C. J. Lambert, R. J. Nichols, S. J. Higgins, Angew. Chem., Int. Ed. Engl. 2019, 58, 16583.
- 51P. Karafiloglou, J. Comput. Chem. 2006, 27, 1883.
- 52M. Lemmer, M. S. Inkpen, K. Kornysheva, N. J. Long, T. Albrecht, Nat. Commun. 2016, 7, 12922.
- 53N. Darwish, A. C. Aragones, T. Darwish, S. Ciampi, I. Diez-Perez, Nano Lett. 2014, 14, 7064.
- 54S. Y. Jon, Y. H. Ko, S. H. Park, H.-J. Kim, K. Kim, Chem. Commun. 2001, 12, 1938.
- 55N. P. E. Barry, B. Therrien, Inorg. Chem. Commun. 2009, 12, 465.
- 56J. K. Thomas, S. Hashimoto, New J. Chem. 1987, 11, 145.
- 57J. R. Hahn, W. Ho, Phys. Rev. Lett. 2001, 87, 196102.
- 58S. Guo, J. Hihath, N. Tao, Nano Lett. 2011, 11, 927.