Stable Bismuth-Doped Lead Halide Perovskite Core-Shell Nanocrystals by Surface Segregation Effect
Jingrun Zhu
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontier Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorLihui Zhou
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorCorresponding Author
Yihua Zhu
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontier Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJianfei Huang
Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106 USA
Search for more papers by this authorLu Hou
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontier Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorJianhua Shen
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontier Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorCorresponding Author
Sheng Dai
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chunzhong Li
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontier Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJingrun Zhu
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontier Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorLihui Zhou
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorCorresponding Author
Yihua Zhu
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontier Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJianfei Huang
Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106 USA
Search for more papers by this authorLu Hou
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontier Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorJianhua Shen
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontier Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorCorresponding Author
Sheng Dai
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chunzhong Li
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontier Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Lead halide perovskite nanocrystals (NCs) exhibit excellent optoelectronic performance, however, the broad application is limited by their poor stability. Herein, a strategy for stable core-shell structured bismuth-doped lead halide perovskite NCs is reported. The stable core-shell perovskite NCs are prepared based on heterovalent substitutions and surface segregation effect. Core-shell features are revealed through advanced characterization and structure analyses. Meanwhile, the transfer of carriers between the core and the shell is observed by ultrafast transient absorption spectroscopy. The core-shell structured perovskite NCs exhibit outstanding structure stability and retain 97% of the original photocatalytic efficiency after cycle experiments under moisture ambient and light irradiation. Such a core-shell structure constructs gradient energy levels. These findings are expected to facilitate the development of stable lead halide perovskite devices.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202104399-sup-0001-SuppMat.pdf1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Ou, W. Tu, S. Yin, W. Xing, S. Wu, H. Wang, S. Wan, Q. Zhong, R. Xu, Angew. Chem., Int. Ed. 2018, 57, 13570.
- 2Y. F. Xu, M. Z. Yang, B. X. Chen, X. D. Wang, H. Y. Chen, D. B. Kuang, C. Y. Su, J. Am. Chem. Soc. 2017, 139, 5660.
- 3D. Cardenas-Morcoso, A. F. Gualdrón-Reyes, A. B. F. Vitoreti, M. García-Tecedor, S. J. Yoon, M. S. de la Fuente, I. Mora-Seró, S. Gimenez, J. Phys. Chem. Lett. 2019, 10, 630.
- 4S. Park, W. J. Chang, C. W. Lee, S. Park, H.-Y. Ahn, K. T. Nam, Nat. Energy 2016, 2, 16185.
- 5S. Yuan, Z. K. Wang, M. P. Zhuo, Q. S. Tian, Y. Jin, L. S. Liao, ACS Nano 2018, 12, 9541.
- 6J. Song, J. Li, X. Li, L. Xu, Y. H. Z. Dong, Adv. Mater. 2015, 27, 7162.
- 7Q. Wang, X. Wang, Z. Yang, N. Zhou, Y. Deng, J. Zhao, X. Xiao, P. Rudd, A. Moran, Y. Yan, J. Huang, Nat. Commun. 2019, 10, 5633.
- 8A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, J. M. Luther, Science 2016, 354, 92.
- 9E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, J. M. Luther, Sci. Adv. 2017, 3, eaao4204.
- 10G. H. Ahmed, J. K. El-Demellawi, J. Yin, J. Pan, D. B. Velusamy, M. N. Hedhili, E. Alarousu, O. M. Bakr, H. N. Alshareef, O. F. Mohammed, ACS Energy Lett. 2018, 3, 2301.
- 11M. Gong, R. Sakidja, R. Goul, D. Ewing, M. Casper, A. Stramel, A. Elliot, J. Z. Wu, ACS Nano 2019, 13, 3714.
- 12Y. Chen, Y. Chu, X. Wu, W. Ou-Yang, J. Huang, Adv. Mater. 2017, 29, 1704062.
- 13Q. A. Akkerman, G. Raino, M. V. Kovalenko, L. Manna, Nat. Mater. 2018, 7, 394.
- 14E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, J. M. Luther, Chem. Mater. 2015, 27, 4885.
- 15J. A. Christians, P. A. M. Herrera, P. V. Kamat, J. Am. Chem. Soc. 2015, 137, 1530.
- 16S. Huang, Z. Li, B. Wang, N. Zhu, C. Zhang, L. Kong, Q. Zhang, A. Shan, L. Li, ACS Appl. Mater. Interfaces 2017, 9, 7249.
- 17T. Zhang, S. H. Cheung, X. Meng, L. Zhu, Y. Bai, C. H. Y. Ho, S. Xiao, Q. Xue, S. K. So, S. Yang, J. Phys. Chem. Lett. 2017, 8, 5069.
- 18Q. A. Akkerman, D. Meggiolaro, Z. Dang, F. De Angelis, L. Manna, ACS Energy Lett. 2017, 2, 2183.
- 19Q. Wang, X. Zhang, Z. Jin, J. Zhang, Z. Gao, Y. Li, S. F. Liu, ACS Energy Lett. 2017, 2, 1479.
- 20M. Lu, X. Zhang, Y. Zhang, J. Guo, X. Shen, W. W. Yu, Adv. Mater. 2018, 30, 1804691.
- 21M. Liu, G. Zhong, Y. Yin, J. Miao, K. Li, C. Wang, X. Xu, C. Shen, H. Meng, Adv. Sci. 2017, 4, 1700335.
- 22H. Liu, Z. Wu, J. Shao, D. Yao, H. Gao, Y. Liu, W. Yu, H. Zhang, B. Yang, ACS Nano 2017, 11, 2239.
- 23B. Luo, Y. C. Pu, S. A. Lindley, Y. Yang, L. Lu, Y. Li, X. Li, J. Z. Zhang, Angew. Chem., Int. Ed. 2016, 55, 8864.
- 24Y. Wei, X. Deng, Z. Xie, X. Cai, S. Liang, P. Ma, Z. Hou, Z. Cheng, J. Lin, Adv. Funct. Mater. 2017, 27, 1703535.
- 25D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N. P. Stadie, M. V. Kovalenko, Nano Lett. 2016, 16, 5866.
- 26Z. Li, L. Kong, S. Huang, L. Li, Angew. Chem., Int. Ed. 2017, 56, 8134.
- 27F. Krieg, S. T. Ochsenbein, S. Yakunin, S. Ten Brinck, P. Aellen, A. Suess, B. Clerc, D. Guggisberg, O. Nazarenko, Y. Shynkarenko, S. Kumar, C. J. Shih, I. Infante, M. V. Kovalenko, ACS Energy Lett. 2018, 3, 641.
- 28H. Han, B. Jeong, T. H. Park, W. Cha, S. M. Cho, Y. Kim, H. H. Kim, D. Kim, D. Y. Ryu, W. K. Choi, C. Park, Adv. Funct. Mater. 2019, 29, 1808193.
- 29Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S. T. Wu, Y. Dong, Adv. Mater. 2016, 28, 10710.
- 30Z. Li, E. Hofman, J. Li, A. H. Davis, C. Tung, L. Wu, W. Zheng, Adv. Funct. Mater. 2018, 28, 1704288.
- 31Q. Zhang, Y. Yin, ACS Cent. Sci. 2018, 4, 668.
- 32T. Kim, K.-H. Kim, S. Kim, S.-M. Choi, H. Jang, H.-K. Seo, H. Lee, D.-Y. Chung, E. Jang, Nature 2020, 586, 385.
- 33W. Chen, J. Hao, W. Hu, Z. Zang, X. Tang, L. Fang, T. Niu, M. Zhou, Small 2017, 13, 1604085.
- 34Y. Zhou, J. Chen, O. M. Bakr, H.-T. Sun, Chem. Mater. 2018, 30, 6589.
- 35P. Gao, M. Grätzel, M. K. Nazeeruddin, Energy Environ. Sci. 2014, 7, 2448.
- 36A. De, N. Mondal, A. Samanta, Nanoscale 2017, 9, 16722.
- 37Z. Li, E. Hofman, A. H. Davis, A. Khammang, J. T. Wright, B. Dzikovski, R. W. Meulenberg, W. Zheng, Chem. Mater. 2018, 30, 6400.
- 38W. Zheng, K. Singh, Z. Wang, J. T. Wright, J. van Tol, N. S. Dalal, R. W. Meulenberg, G. F. Strouse, J. Am. Chem. Soc. 2012, 134, 5577.
- 39V. V. Seminko, A. A. Masalov, Y. I. Boyko, Y. V. Malyukin, Opt. Mater. 2012, 34, 1998.
- 40L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692.
- 41J. Yao, J. Ge, B. N. Han, K. H. Wang, H. B. Yao, H. L. Yu, J. H. Li, B. S. Zhu, J. Song, C. Chen, Q. Zhang, H. Zeng, Y. Luo, S. H. Yu, J. Am. Chem. Soc. 2018, 140, 3626.
- 42J. Zhang, M.-H. Shang, P. Wang, X. Huang, J. Xu, Z. Hu, Y. Zhu, L. Han, ACS Energy Lett. 2016, 1, 535.
- 43P. V. Kamat, N. M. Dimitrijevic, A. J. Nozik, J. Phys. Chem. 1989, 93, 2873.
- 44D. Mocatta, G. Cohen, J. Schattner, O. Millo, E. Rabani, U. Banin, Science 2011, 332, 77.
- 45Z. Chi, H. Chen, Z. Chen, Q. Zhao, H. Chen, Y.-X. Weng, ACS Nano 2018, 12, 8961.
- 46Y. Wei, Z. Cheng, J. Lin, Chem. Soc. Rev. 2019, 48, 310.
- 47M. Yang, T. Zhang, P. Schulz, Z. Li, G. Li, D. H. Kim, N. Guo, J. J. Berry, K. Zhu, Y. Zhao, Nat. Commun. 2016, 7, 12305.