Hierarchical Ti3C2Tx MXene/Carbon Nanotubes Hollow Microsphere with Confined Magnetic Nanospheres for Broadband Microwave Absorption
Chang Zhang
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 P. R. China
Department of Materials Science, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorZhengchen Wu
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 P. R. China
Department of Materials Science, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorChunyang Xu
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 P. R. China
Department of Materials Science, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorBintong Yang
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 P. R. China
Department of Materials Science, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorLei Wang
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 P. R. China
Department of Materials Science, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorWenbin You
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 P. R. China
Department of Materials Science, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorCorresponding Author
Renchao Che
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 P. R. China
Department of Materials Science, Fudan University, Shanghai, 200438 P. R. China
E-mail: [email protected]
Search for more papers by this authorChang Zhang
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 P. R. China
Department of Materials Science, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorZhengchen Wu
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 P. R. China
Department of Materials Science, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorChunyang Xu
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 P. R. China
Department of Materials Science, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorBintong Yang
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 P. R. China
Department of Materials Science, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorLei Wang
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 P. R. China
Department of Materials Science, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorWenbin You
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 P. R. China
Department of Materials Science, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorCorresponding Author
Renchao Che
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 P. R. China
Department of Materials Science, Fudan University, Shanghai, 200438 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Hierarchical hollow structure with unique interfacial properties holds great potential for microwave absorption (MA). Ti3C2Tx MXene has been a hot topic due to rich interface structure, abundant defects, and functional groups. However, its overhigh permittivity and poor aggregation-resistance limit the further application. Herein, a hierarchical MXene-based hollow microsphere is prepared via a facile spray drying strategy. Within the microsphere, few-layered MXene nanosheets are separated by dispersed carbon nanotubes (CNTs), exposing abundant dielectric polarization interfaces. Besides, numerous magnetic Fe3O4 nanospheres are uniformly dispersed and confined within nano-cavities between 1D network and 2D framework. Such a novel structure simultaneously promotes interfacial polarization by ternary MXene/CNTs/Fe3O4 interfaces, enhances magnetic loss by microscale and nanoscale coupling network, enlarges conduction loss by MXene/CNTs dual-network, and optimizes impedance matching by hierarchical porous structure. Therefore, Fe3O4@Ti3C2Tx/CNTs composite achieves excellent MA property with a maximum reflection loss of −40.1 dB and an effective bandwidth of 5.8 GHz at the thickness of only 2 mm. This work demonstrates a feasible hierarchical structure design strategy for multi-dimension MXene composite to realize the high-efficiency MA performance.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202104380-sup-0001-SuppMat.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Q. Song, F. Ye, L. Kong, Q. Shen, L. Han, L. Feng, G. Yu, Y. Pan, H. Li, Adv. Funct. Mater. 2020, 30, 2000475.
- 2M. Han, X. Yin, X. Li, B. Anasori, L. Zhang, L. Cheng, Y. Gogotsi, ACS Appl. Mater. Interfaces 2017, 9, 20038.
- 3Y. Qing, W. Zhou, F. Luo, D. Zhu, Ceram. Int. 2016, 42, 16412.
- 4F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, Y. Gogotsi, Science 353, 1137.
- 5W. T. Cao, F. F. Chen, Y. J. Zhu, Y. G. Zhang, Y. Y. Jiang, M. G. Ma, F. Chen, ACS Nano 2018, 12, 4583.
- 6J. Liu, H. B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z. Z. Yu, Adv. Mater. 2017, 29, 1702367.
- 7Y. Z. Fang, R. Hu, K. Zhu, K. Ye, J. Yan, G. Wang, D. Cao, Adv. Funct. Mater. 2020, 30, 2005663.
- 8Y. Yang, Z. Cao, P. He, L. Shi, G. Ding, R. Wang, J. Sun, Nano Energy 2019, 66, 104134.
- 9Q. Zhang, J. Teng, G. Zou, Q. Peng, Q. Du, T. Jiao, J. Xiang, Nanoscale 2016, 8, 7085.
- 10J. Orangi, M. Beidaghi, Adv. Funct. Mater. 2020, 30, 2005305.
- 11C. Xu, L. Wang, X. Li, X. Qian, Z. Wu, W. You, K. Pei, G. Qin, Q. Zeng, Z. Yang, C. Jin, R. Che, Nano-Micro Lett. 2021, 13, 47.
- 12R. Sun, H.-B. Zhang, J. Liu, X. Xie, R. Yang, Y. Li, S. Hong, Z.-Z. Yu, Adv. Funct. Mater. 2017, 27, 1702807.
- 13J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv, J. Yang, Adv. Funct. Mater. 2020, 30, 2002595.
- 14X. Li, X. Yin, M. Han, C. Song, H. Xu, Z. Hou, L. Zhang, L. Cheng, J. Mater. Chem. C 2017, 5, 4068.
- 15W. Feng, H. Luo, S. Zeng, C. Chen, L. Deng, Y. Tan, X. Zhou, S. Peng, H. Zhang, Mater. Chem. Front. 2018, 2, 2320.
- 16H. Xu, X. Yin, X. Li, M. Li, S. Liang, L. Zhang, L. Cheng, ACS Appl. Mater. Interfaces 2019, 11, 10198.
- 17H. Liu, L. Li, G. Cui, X. Wang, Z. Zhang, X. Lv, Nanomaterials 2020, 10, 1666.
- 18Z. Wu, Z. Yang, C. Jin, Y. Zhao, R. Che, ACS Appl. Mater. Interfaces 2021, 13, 5866.
- 19P. Sambyal, A. Iqbal, J. Hong, H. Kim, M. K. Kim, S. M. Hong, M. Han, Y. Gogotsi, C. M. Koo, ACS Appl. Mater. Interfaces 2019, 11, 38046.
- 20L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding, ACS Nano 2020, 14, 10633.
- 21J. Luo, K. Zhang, M. Cheng, M. Gu, X. Sun, Chem. Eng. J. 2020, 380, 122625.
- 22X. Wu, B. Huang, Q. Wang, Y. Wang, Chem. Eng. J. 2020, 380, 122456.
- 23W. Liang, I. Zhitomirsky, Materials 2021, 14, 2930.
- 24Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang, C. Liu, A. Wei, X. Xiang, L. Wei, J. Gu, ACS Nano 2020, 14, 8368.
- 25W. Cao, C. Ma, S. Tan, M. Ma, P. Wan, F. Chen, Nano-Micro Lett. 2019, 11, 72.
- 26J. Chen, X. Yuan, F. Lyu, Q. Zhong, H. Hu, Q. Pan, Q. Zhang, J. Mater. Chem. A 2019, 7, 1281.
- 27Y.-H. Chen, Z.-H. Huang, M.-M. Lu, W.-Q. Cao, J. Yuan, D.-Q. Zhang, M.-S. Cao, J. Mater. Chem. A 2015, 3, 12621.
- 28L. Wang, M. Huang, X. Qian, L. Liu, W. You, J. Zhang, M. Wang, R. Che, Small 2021, 17, e2100970.
- 29S. Wei, X. Wang, B. Zhang, M. Yu, Y. Zheng, Y. Wang, J. Liu, Chem. Eng. J. 2017, 314, 477.
- 30L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou, Y. Feng, J. Ma, Y. Wang, R. Zhang, C. Liu, ACS Appl. Mater. Interfaces 2019, 11, 25399.
- 31L. Liang, R. Yang, G. Han, Y. Feng, B. Zhao, R. Zhang, Y. Wang, C. Liu, ACS Appl. Mater. Interfaces 2020, 12, 2644.
- 32L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang, H. B. Zhang, X. Zhou, C. Liu, C. Shen, X. Xie, ACS Nano 2021, 15, 6622.
- 33X. Li, W. You, L. Wang, J. Liu, Z. Wu, K. Pei, Y. Li, R. Che, ACS Appl. Mater. Interfaces 2019, 11, 44536.
- 34L. Xiu, Z. Wang, M. Yu, X. Wu, J. Qiu, ACS Nano 2018, 12, 8017.
- 35L. Xiu, W. Pei, S. Zhou, Z. Wang, P. Yang, J. Zhao, J. Qiu, Adv. Funct. Mater. 2020, 30, 1910028.
- 36X. Li, C. Wen, L. Yang, R. Zhang, X. Li, Y. Li, R. Che, Carbon 2021, 175, 509.
- 37X. Li, M. Zhang, W. You, K. Pei, Q. Zeng, Q. Han, Y. Li, H. Cao, X. Liu, R. Che, ACS Appl. Mater. Interfaces 2020, 12, 18138.
- 38S. A. Shah, T. Habib, H. Gao, P. Gao, W. Sun, M. J. Green, M. Radovic, Chem. Commun. 2016, 53, 400.
- 39M. Hu, Z. Li, T. Hu, S. Zhu, C. Zhang, X. Wang, ACS Nano 2016, 10, 11344.
- 40J. Yan, C. E. Ren, K. Maleski, C. B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Adv. Funct. Mater. 2017, 27, 1701264.
- 41G. Chen, C. Zhang, S. Xue, J. Liu, Y. Wang, Y. Zhao, K. Pei, X. Yu, R. Che, Small 2021, 17, e2100510.
- 42J. Wang, Z. Zhang, X. Yan, S. Zhang, Z. Wu, Z. Zhuang, W. Q. Han, Nano-Micro Lett. 2019, 12, 4.
- 43Z. Yang, L. Jiang, J. Wang, F. Liu, J. He, A. Liu, S. Lv, R. You, X. Yan, P. Sun, C. Wang, Y. Duan, G. Lu, Sens. Actuators, B 2021, 326, 128828.
- 44X. Chen, Z. Jia, A. Feng, B. Wang, X. Tong, C. Zhang, G. Wu, J. Colloid Interface Sci. 2019, 553, 465.
- 45X. Yu, Y. Zhang, L. Wang, L. Xing, W. You, J. Liu, G. Chen, G. Ding, J. Ding, X. Liu, M. Wang, R. Che, J. Mater. Chem. C 2020, 8, 5715.
- 46L. Wang, X. Yu, X. Li, J. Zhang, M. Wang, R. Che, Chem. Eng. J. 2020, 383, 123099.
- 47W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen, G. Ji, Nano-Micro Lett. 2021, 13, 102.
- 48J. Liu, M. Wang, L. Zhang, D. Zang, H. Liu, L. F. Liotta, H. Wu, J. Colloid Interface Sci. 2021, 591, 148.
- 49Z. Xu, Y. Du, D. Liu, Y. Wang, W. Ma, Y. Wang, P. Xu, X. Han, ACS Appl. Mater. Interfaces 2019, 11, 4268.
- 50D. Liu, Y. Du, P. Xu, F. Wang, Y. Wang, L. Cui, H. Zhao, X. Han, J. Mater. Chem. A 2021, 9, 5086.
- 51Y. Chen, Z. Huang, M. Lu, W. Cao, J. Yuan, D. Zhang, M. Cao, J. Mater. Chem. A 2015, 3, 12621.
- 52M. Tang, J. Y. Zhang, S. Bi, Z. L. Hou, X. H. Shao, K. T. Zhan, M. S. Cao, ACS Appl. Mater. Interfaces 2019, 11, 33285.
- 53Z. P. Chen, C. Xu, C. Ma, W. C. Ren, H. M. Cheng, Adv. Mater. 2013, 25, 1296.
- 54J. Ma, X. Wang, W. Cao, C. Han, H. Yang, J. Yuan, M. Cao, Chem. Eng. J. 2018, 339, 487.
- 55L Wang, M Huang, X Yu, W. You, J. Zhang, X. Liu, M. Wang, R. Che, Nano-Micro Lett. 2020, 12, 150.
- 56M. Huang, L. Wang, K. Pei, W. You, X. Yu, Z. Wu, R. Che, Small 2020, 16, e2000158.
- 57D. Liu, Y. Du, P. Xu, N. Liu, Y. Wang, H. Zhao, L. Cui, X. Han, J. Mater. Chem. C 2019, 7, 5037.
- 58J. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei, X. Yue, Z. Jiang, Nanoscale 2016, 8, 8899.
- 59Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, Adv. Mater. 2016, 28, 486.
- 60X. Jian, B. Wu, Y. Wei, S. X. Dou, X. Wang, W. He, N. Mahmood, ACS Appl. Mater. Interfaces 2016, 8, 6101.
- 61Y. Xie, B. Yan, H. Xu, J. Chen, Q. Liu, Y. Deng, H. Zeng, ACS Appl. Mater. Interfaces 2014, 6, 8845.
- 62J. Yuan, C.-F. Li, Z.-Q. Liu, D. Wu, L. Cao, CrystEngComm 2017, 19, 6506.
- 63Q. Liu, X. Xu, W. Xia, R. Che, C. Chen, Q. Cao, J. He, Nanoscale 2015, 7, 1736.
- 64H. Li, Z. Cao, J. Lin, H. Zhao, Q. Jiang, Z. Jiang, H. Liao, Q. Kuang, Z. Xie, Nanoscale 2018, 10, 1930.