Interfacial Covalent Bonding Endowing Ti3C2-Sb2S3 Composites High Sodium Storage Performance
Hui Wang
Key Laboratory for Mineral Materials & Application of Hunan Province, School of Mineral Processing and Bioengineering, Central South University, Changsha, 410083 China
Shanghai IC R&D Center, Shanghai, 201210 China
Search for more papers by this authorXiaolan Song
Key Laboratory for Mineral Materials & Application of Hunan Province, School of Mineral Processing and Bioengineering, Central South University, Changsha, 410083 China
Search for more papers by this authorMiao Lv
Key Laboratory for Mineral Materials & Application of Hunan Province, School of Mineral Processing and Bioengineering, Central South University, Changsha, 410083 China
Shanghai IC R&D Center, Shanghai, 201210 China
Search for more papers by this authorShengming Jin
Key Laboratory for Mineral Materials & Application of Hunan Province, School of Mineral Processing and Bioengineering, Central South University, Changsha, 410083 China
Search for more papers by this authorJianlong Xu
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
Search for more papers by this authorXiaodong Kong
Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorXingyun Li
BTR New Material Group Co., Ltd., Shenzhen, 518106 China
Search for more papers by this authorZhiliang Liu
Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Xinghua Chang
Key Laboratory for Mineral Materials & Application of Hunan Province, School of Mineral Processing and Bioengineering, Central South University, Changsha, 410083 China
E-mail: [email protected]
Search for more papers by this authorWei Sun
Key Laboratory for Mineral Materials & Application of Hunan Province, School of Mineral Processing and Bioengineering, Central South University, Changsha, 410083 China
Search for more papers by this authorJie Zheng
Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorXingguo Li
Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorHui Wang
Key Laboratory for Mineral Materials & Application of Hunan Province, School of Mineral Processing and Bioengineering, Central South University, Changsha, 410083 China
Shanghai IC R&D Center, Shanghai, 201210 China
Search for more papers by this authorXiaolan Song
Key Laboratory for Mineral Materials & Application of Hunan Province, School of Mineral Processing and Bioengineering, Central South University, Changsha, 410083 China
Search for more papers by this authorMiao Lv
Key Laboratory for Mineral Materials & Application of Hunan Province, School of Mineral Processing and Bioengineering, Central South University, Changsha, 410083 China
Shanghai IC R&D Center, Shanghai, 201210 China
Search for more papers by this authorShengming Jin
Key Laboratory for Mineral Materials & Application of Hunan Province, School of Mineral Processing and Bioengineering, Central South University, Changsha, 410083 China
Search for more papers by this authorJianlong Xu
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
Search for more papers by this authorXiaodong Kong
Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorXingyun Li
BTR New Material Group Co., Ltd., Shenzhen, 518106 China
Search for more papers by this authorZhiliang Liu
Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Xinghua Chang
Key Laboratory for Mineral Materials & Application of Hunan Province, School of Mineral Processing and Bioengineering, Central South University, Changsha, 410083 China
E-mail: [email protected]
Search for more papers by this authorWei Sun
Key Laboratory for Mineral Materials & Application of Hunan Province, School of Mineral Processing and Bioengineering, Central South University, Changsha, 410083 China
Search for more papers by this authorJie Zheng
Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorXingguo Li
Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorAbstract
Antimony sulfide is attracting enormous attention due to its remarkable theoretical capacity as anode for sodium-ion batteries (SIBs). However, it still suffers from poor structural stability and sluggish reaction kinetics. Constructing covalent chemical linkage to anchor antimony sulfide on two-dimension conductive materials is an effective strategy to conquer the challenges. Herein, Ti3C2-Sb2S3 composites are successfully achieved with monodispersed Sb2S3 uniformly pinned on the surface of Ti3C2Tx MXene through covalent bonding of Ti-O-Sb and S-Ti. Ti3C2Tx MXene serves as both charge storage contributor and flexible conductive buffer to sustain the structural integrity of the electrode. Systematic analysis indicates that construction of efficient interfacial chemical linkage could bridge the physical gap between Sb2S3 nanoparticles and Ti3C2Tx MXene, thus promoting the interfacial charge transfer efficiency. Furthermore, the interfacial covalent bonding could also effectively confine Sb2S3 nanoparticles and the corresponding reduced products on the surface of Ti3C2Tx MXene. Benefited from the unique structure, Ti3C2-Sb2S3 anode delivers a high reversible capacity of 475 mAh g−1 at 0.2 A g−1 after 300 cycles, even retaining 410 mAh g−1 at 1.0 A g−1 after 500 cycles. This strategy is expected to shed more light on interfacial chemical linkage towards rational design of advanced materials for SIBs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202104293-sup-0001-SuppMat.pdf1.2 MB | Supporting Informatiom |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. He, R. Ciez, P. Moutis, S. Kar, J. F. Whitacre, Appl. Energy 2020, 273, 115151.
- 2Z. Yang, J. Zhang, M. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 2011, 111, 3577.
- 3A. Stephan, B. Battke, M. D. Beuse, J. H. Clausdeinken, T. S. Schmidt, Nat. Energy 2016, 1, 16079.
- 4Z. P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, Z. Chen, Nat. Energy 2018, 3, 279.
- 5M. Zeng, S. Xue, M. Ma, X. Zhu, Renewable Sustainable Energy Rev. 2013, 20, 169.
- 6N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636.
- 7Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Chem. Soc. Rev. 2015, 44, 5926.
- 8Z. Liu, S. Yang, B. Sun, P. Yang, J. Zheng, X. Li, Angew. Chem., Int. Ed. 2020, 59, 1975.
- 9S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang, K. Xi, J. Maier, Y. Yu, Adv. Mater. 2017, 29, 1700431.1-1700431.21.
- 10V. L. Chevrier, G. Ceder, J. Electrochem. Soc. 2011, 158, A1011.
- 11S. Guo, J. Yi, Y. Sun, H. Zhou, Energy Environ. Sci. 2016, 9, 2978.
- 12Z. Liu, X. Wang, Z. Wu, S. Yang, S. Yang, S. Chen, X. Wu, X. Chang, P. Yang, J Zheng, X. Li, Nano Res. 2020, 13, 3157.
- 13Y. Wen, K. He, Y. Zhu, F. Han, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Nat. Commun. 2014, 5, 4033.
- 14J. Y. Hwang, S. T. Myung, Y. K. Sun, Chem. Soc. Rev. 2017, 46, 3529.
- 15H. Kang, Y. Liu, K. Cao, Y. Zhao, L. Jiao, Y. Wang, H. Yuan, J. Mater. Chem. A 2015, 3, 17899.
- 16J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, Electrochem. Energy Rev. 2018, 1, 35.
- 17G. Li, Y. Wang, H. Guo, Z. Liu, P. Chen, X. Zheng, J. Sun, H. Chen, J. Zheng, X. Li, J. Mater. Chem. A 2020, 8, 16920.
- 18Q. Wang, C. Zhao, Y. Lu, Y. Li, L. Chen, Small 2017, 13, 1701835.
- 19W. Zhao, L. Zhang, F. Jiang, X. Chang, Y. Yang, P. Ge, W. Sun, X. Ji, J. Materi. Chem. A 2020, 8, 5284.
- 20C. Cui, J. Xu, Y. Zhang, Z. Wei, M. Mao, X. Lian, S. Wang, C. Yang, X. Fan, J. Ma, C. Wang, Nano Lett. 2019, 19, 538.
- 21F. He, C. Tang, G. Zhu, Y. Liu, A. Du, Q. Zhang, M. Wu, H. Zhang, Sci. China Chem. 2021, 64, 964.
- 22J. Xie, L. Liu, J. Xia, Y. Zhang, M. Li, Y. Ouyang, S. Nie, X. Wang, Nano-Micro Lett. 2017, 10, 12.
- 23J. Xie, J. Xia, Y. Yuan, L. Liu, Y. Zhang, S. Nie, H. Yan, X. Wang, J. Power Sources 2019, 435, 226762.
- 24P. Ge, L. Zhang, W. Zhao, Y. Yang, W. Sun, X. Ji, Adv. Funct. Mater. 2020, 30, 1910599.
- 25X. Xiong, G. Wang, Y. Lin, Y. Wang, X. Ou, F. Zheng, C. Yang, J. H. Wang, M. Liu, ACS Nano 2016, 10, 10953.
- 26L. Dashairya, P. Saha, Mater. Today: Proc. 2020, 21, 1899.
- 27H. Hou, M. Jing, Z. Huang, Y. Yang, Y. Zhang, J. Chen, Z. Wu, X. Ji, ACS Appl. Mater. Interfaces 2015, 7, 19362.
- 28W. Yin, W. Chai, K. Wang, W. Ye, Y. Rui, B. Tang, Electrochim. Acta 2019, 321, 134699.
- 29X. Xiong, C. Yang, G. Wang, Y. Lin, X. Ou, J. H. Wang, B. Zhao, M. Liu, Z. Lin, K. Huang, Energy Environ. Sci. 2017, 10, 1757.
- 30M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Chem. Mater. 2017, 29, 7633.
- 31M. Hu, H. Zhang, T. Hu, B. Fan, X. Wang, Z. Li, Chem. Soc. Rev. 2020, 49, 6666.
- 32Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu, B. Duployer, P. O. Å. Persson, P. Eklund, L. Hultman, M. Li, K. Chen, X. H. Zha, S. Du, P. Rozier, Z. Chai, E. Raymundo-Piñero, P.-L. Taberna, P. Simon, Q. Huang, Nat. Mater. 2020, 19, 894.
- 33F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, H. Man, C. S. Koo, Y. M. Gogotsi, Science 2016, 353, 1137.
- 34A. VahidMohammadi, M. Mojtabavi, N. M. Caffrey, M. Wanunu, M. Beidaghi, Adv. Mater. 2019, 31, 1806931.
- 35D. Xiong, X. Li, Z. Bai, S. Lu, Small 2018, 14, 1703419.
- 36C. F. Du, Q. Liang, Y. Zheng, Y. Luo, H. Mao, Q. Yan, ACS Appl. Mater. Interfaces 2018, 10, 33779.
- 37J. Ai, Y. Lei, S. Yang, C. Lai, Q. Xu, Chem. Eng. J. 2019, 357, 150.
- 38J. Cao, Z. Sun, J. Li, Y. Zhu, Z. Yuan, Y. Zhang, D. Li, L. Wang, W. Han, ACS Nano 2021, 15, 3423.
- 39J. Cao, J. Li, D. Li, Z. Yuan, Y. Zhang, V. Shulga, Z. Sun, W. Han, Nano-Micro Lett. 2021, 13, 113.
- 40X. Song, H. Wang, S. Jin, M. Lv, J. Xu, Nano Res. 2020, 13, 1659.
- 41A. Sarycheva, Y. Gogotsi, Chem. Mater. 2020, 32, 3480.
- 42Q. Wang, F. Liu, L. Wang, L. Jiang, Q. Wang, B. Hong, Y. Lai, Scripta Mater. 2019, 173, 75.
- 43J. Tang, X. Huang, T. Lin, T. Qiu, L. Wang, Energy Stor. Mater. 2019, 26, 550.
- 44H. Bryngelsson, J. Eskhult, L. Nyholm, M. Herranen, O. Alm, K. Edström, Chem. Mater. 2007, 19, 1170.
- 45X. Ren, J. Wang, D. Zhu, Q. Li, W. Tian, L. Wang, J. Zhang, L. Miao, P. K. Chu, K. Huo, Nano Energy 2018, 54, 322.
- 46P. Yan, R. Zhang, J. Jia, C. Wu, A. Zhou, J. Xu, X. Zhang, J. Power Sources 2015, 284, 38.
- 47K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, S. J. Kim, J. Mater. Chem. A 2017, 5, 5726.
- 48H. Tao, M. Zhou, R. Wang, K. Wang, K. Jiang, Adv. Sci. 2018, 5, 1801021.
- 49R. Zhao, H. Di, C. Wang, X. Hui, D. Zhao, R. Wang, L. Zhang, L. Yin, ACS Nano 2020, 14, 13938.
- 50T. Wang, D. Shen, H. Liu, H. Chen, Q. Liu, B. Lu, ACS Appl. Mater. Interfaces 2020, 12, 57907.
- 51J. Li, D. Yan, X. Zhang, S. Hou, D. Li, T. Lu, Y. Yao, L. Pan, Electrochim. Acta 2017, 228, 436.
- 52Y. Liu, H. Wang, L. Cheng, N. Han, F. Zhao, P. Li, C. Jin, Y. Li, Nano Energy 2016, 20, 168.
- 53H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, S. E. Lindquist, J. Phys. Chem. B 2008, 101, 7710.
- 54J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 2007, 111, 14925.
- 55D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen, ACS Nano 2016, 10, 10211.
- 56J. Li, X. Yuan, C. Lin, Y. Yang, L. Xu, X. Du, J. Xie, J. Lin, J. Sun, Adv. Energy Mater. 2017, 7, 1602725.
- 57B. E. Conway, V. Birss, J. Wojtowicz, J. Power Sources 1997, 66, 1.
- 58R. B. Rakhi, B. Ahmed, D. Anjum, H. N. Alshareef, ACS Appl. Mater. Interfaces 2016, 8, 18806.
- 59G Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
- 60G. G. Kresse, J. J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 61J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1998, 77, 3865.
- 62G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 63P. E. Blochl, Phys. Rev. B 1994, 50, 17953.
- 64J. A. Stefan Grimme, E. Stephan, K. Helge, J. Chem. Phys. 2010, 132, 154104.