Single Crystal Halide Perovskite Film for Nonlinear Resistive Memory with Ultrahigh Switching Ratio
Lutao Li
College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215000 China
Search for more papers by this authorYuan Chen
College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215000 China
Search for more papers by this authorChangming Cai
Suzhou O-Light Optical Technology Co., Ltd., Suzhou, 215000 China
Search for more papers by this authorPeipei Ma
College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215000 China
Search for more papers by this authorHuayong Ji
Suzhou O-Light Optical Technology Co., Ltd., Suzhou, 215000 China
Search for more papers by this authorCorresponding Author
Guifu Zou
College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215000 China
E-mail: [email protected]
Search for more papers by this authorLutao Li
College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215000 China
Search for more papers by this authorYuan Chen
College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215000 China
Search for more papers by this authorChangming Cai
Suzhou O-Light Optical Technology Co., Ltd., Suzhou, 215000 China
Search for more papers by this authorPeipei Ma
College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215000 China
Search for more papers by this authorHuayong Ji
Suzhou O-Light Optical Technology Co., Ltd., Suzhou, 215000 China
Search for more papers by this authorCorresponding Author
Guifu Zou
College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215000 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Morre's law is coming to an end only if the memory industry can keep stuffing the devices with new functionality. Halide perovskite acts as a promising candidate for application in next-generation nonvolatile memory. As is well known, the switching ratio is the key device requirement of resistive memory to improve recognition accuracy. Here, the authors introduce an all-inorganic halide perovskite CsPbBr3 single crystal film (SCF) into resistive memory as an active layer. The Ag/CsPbBr3/Ag memory cells exhibit reproducible resistive switching with an ultrahigh switching ratio (over 109) and a fast switching speed (1.8 µs). It is studied that the Schottky barrier of metal/CsPbBr3 SCF contact follows the tendency of Schottky–Mott theory, and the Fermi level pinning effect is effectively reduced. The interface S parameter of metal/CsPbBr3 SCF contact is 0.50, suggesting a great interface contact is formed. The great interface contact contributes to the steady high resistance state (HRS), and then the steady HRS leads to an ultrahigh resistive switching ratio. This work demonstrates high performance from halide perovskite SCF-based memory. The introduction of halide perovskite SCF in resistive random access memory provides great potential as an alternative in future computing systems.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202103881-sup-0001-SuppMat.pdf2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) J. C. Scott, Science 2004, 304, 62; b) M. M. Waldrop, Nature 2016, 530, 144.
- 2R. Waser, M. Aono, Nat. Mater. 2007, 6, 833.
- 3a) D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, Nature 2008, 453, 80; b) F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Mater. Sci. Eng., R 2014, 83, 1; c) M. Wang, S. Cai, C. Pan, C. Wang, X. Lian, Y. Zhuo, K. Xu, T. Cao, X. Pan, B. Wang, S.-H. Liang, J. J. Yang, P. Wang, F. Miao, Nat. Electron. 2018, 1, 130.
- 4Q. Xia, J. J. Yang, Nat. Mater. 2019, 18, 309.
- 5Y. Wang, Z. Lv, Q. Liao, H. Shan, J. Chen, Y. Zhou, L. Zhou, X. Chen, V. A. L. Roy, Z. Wang, Z. Xu, Y. Zeng, S.-T. Han, Adv. Mater. 2018, 30, 1800327.
- 6J. Zhang, G. Hodes, Z. Jin, S. Liu, Angew. Chem., Int. Ed. 2019, 58, 15596.
- 7H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, Science 2015, 350, 1222.
- 8a) J. Choi, S. Park, J. Lee, K. Hong, D.-H. Kim, C. W. Moon, G. D. Park, J. Suh, J. Hwang, S. Y. Kim, H. S. Jung, N.-G. Park, S. Han, K. T. Nam, H. W. Jang, Adv. Mater. 2016, 28, 6562; b) X. Zhu, J. Lee, W. D. Lu, Adv. Mater. 2017, 29, 1700527; c) B. Hwang, J.-S. Lee, Adv. Mater. 2017, 29, 1701048; d) K. Kang, H. Ahn, Y. Song, W. Lee, J. Kim, Y. Kim, D. Yoo, T. Lee, Adv. Mater. 2019, 31, 1804841.
- 9a) Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, J. Huang, Nat. Mater. 2014, 14, 193; b) J. Choi, J. S. Han, K. Hong, S. Y. Kim, H. W. Jang, Adv. Mater. 2018, 30, 1704002.
- 10Y. Wu, Y. Wei, Y. Huang, F. Cao, D. Yu, X. Li, H. Zeng, Nano Res. 2017, 10, 1584.
- 11D. Liu, Q. Lin, Z. Zang, M. Wang, P. Wangyang, X. Tang, M. Zhou, W. Hu, ACS Appl. Mater. Interfaces 2017, 9, 6171.
- 12J. S. Han, Q. V. Le, J. Choi, K. Hong, C. W. Moon, T. L. Kim, H. Kim, S. Y. Kim, H. W. Jang, Adv. Funct. Mater. 2017, 28, 1705783.
- 13S. Choi, S. H. Tan, Z. Li, Y. Kim, C. Choi, P.-Y. Chen, H. Yeon, S. Yu, J. Kim, Nat. Mater. 2018, 17, 335.
- 14X. Zhao, H. Xu, Z. Wang, Y. Lin, Y. Liu, InfoMat 2019, 1, 407.
- 15Z. Zhang, Z. Wang, T. Shi, C. Bi, F. Rao, Y. Cai, Q. Liu, H. Wu, P. Zhou, InfoMat 2020, 2, 261.
- 16S. P. Senanayak, B. Yang, T. H. Thomas, N. Giesbrecht, W. Huang, E. Gann, B. Nair, K. Goedel, S. Guha, X. Moya, C. R. McNeill, P. Docampo, A. Sadhanala, R. H. Friend, H. Sirringhaus, Sci. Adv. 2017, 3, e1601935.
- 17J. Wang, S. P. Senanayak, J. Liu, Y. Hu, Y. Shi, Z. Li, C. Zhang, B. Yang, L. Jiang, D. Di, A. V. Ievlev, O. S. Ovchinnikova, T. Ding, H. Deng, L. Tang, Y. Guo, J. Wang, K. Xiao, D. Venkateshvaran, L. Jiang, D. Zhu, H. Sirringhaus, Adv. Mater. 2019, 31, 1902618.
- 18M. Cao, J. Tian, Z. Cai, L. Peng, L. Yang, D. Wei, Appl. Phys. Lett. 2016, 109, 233303.
- 19J. Song, Q. Cui, J. Li, J. Xu, Y. Wang, L. Xu, J. Xue, Y. Dong, T. Tian, H. Sun, H. Zeng, Adv. Opt. Mater. 2017, 5, 1700157.
- 20X. Zhu, D. Li, X. Liang, W. D. Lu, Nat. Mater. 2018, 18, 141.
- 21Y. Shi, X. Liang, B. Yuan, V. Chen, H. Li, F. Hui, Z. Yu, F. Yuan, E. Pop, H.-S. P. Wong, M. Lanza, Nat. Electron. 2018, 1, 458.
- 22F. Zhang, H. Zhang, S. Krylyuk, C. A. Milligan, Y. Zhu, D. Y. Zemlyanov, L. A. Bendersky, B. P. Burton, A. V. Davydov, J. Appenzeller, Nat. Mater. 2019, 18, 55.
- 23Y. Chen, H. Zeng, P. Ma, G. Chen, J. Jian, X. Sun, X. Li, H. Wang, W. Yin, Q. Jia, G. Zou, Angew. Chem., Int. Ed. 2020, 60, 2629.
- 24a) S. Saris, V. Niemann, V. Mantella, A. Loiudice, R. Buonsanti, Nanoscale 2019, 11, 19543; b) L. Zhao, R. A. Kerner, Z. Xiao, Y. L. Lin, K. M. Lee, J. Schwartz, B. P. Rand, ACS Energy Lett. 2016, 1, 595.
- 25X. Zhao, Z. Wang, W. Li, S. Sun, H. Xu, P. Zhou, J. Xu, Y. Lin, Y. Liu, Adv. Funct. Mater. 2020, 30, 1910151.
- 26Y. Wang, F. Yang, X. Li, F. Ru, P. Liu, L. Wang, W. Ji, J. Xia, X. Meng, Adv. Funct. Mater. 2019, 29, 1904913.
- 27a) Y. Kwon, N. Park, P.-R. Cha, AIP Adv. 2017, 7, 085207; b) K. M. Kim, B. J. Choi, M. H. Lee, G. H. Kim, S. J. Song, J. Y. Seok, J. H. Yoon, S. Han, C. S. Hwang, Nanotechnology 2011, 22, 254010; c) Y. Zhang, H. Wu, Y. Bai, A. Chen, Z. Yu, J. Zhang, H. Qian, Appl. Phys. Lett. 2013, 102, 233502.
- 28a) W. Pan, B. Yang, G. Niu, K.-H. Xue, X. Du, L. Yin, M. Zhang, H. Wu, X.-S. Miao, J. Tang, Adv. Mater. 2019, 31, 1904405; b) Y. Kang, S. Han, Phys. Rev. Appl. 2018, 10, 044013.
- 29C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Gratzel, S. M. Zakeeruddin, U. Rothlisberger, M. Gratzel, Energy Environ. Sci. 2016, 9, 656.
- 30M. I. Saidaminov, M. A. Haque, J. Almutlaq, S. Sarmah, X.-H. Miao, R. Begum, A. A. Zhumekenov, I. Dursun, N. Cho, B. Murali, O. F. Mohammed, T. Wu, O. M. Bakr, Adv. Opt. Mater. 2017, 5, 1600704.
- 31C. Zou, L. He, L. Y. Lin, Phys. Status Solidi RRL 2019, 13, 1900182.
- 32Q. Lin, W. Hu, Z. Zang, M. Zhou, J. Du, M. Wang, S. Han, X. Tang, Adv. Electron. Mater. 2018, 4, 1700596.
- 33Y. Sun, C. Song, S. Yin, L. Qiao, Q. Wan, J. Liu, R. Wang, F. Zeng, F. Pan, ACS Appl. Mater. Interfaces 2020, 12, 29481.
- 34E. H. Rhoderick, IEE Proc., Part I: Solid-State Electron Devices 1982, 129, 1.
- 35a) J. Tersoff, Phys. Rev. Lett. 1984, 52, 465; b) A. Cowley, S. Sze, J. Appl. Phys. 1965, 36, 3212.
- 36Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang, X. Duan, Nature 2018, 557, 696.
- 37a) Y. Deng, Z. Xiao, J. Huang, Adv. Energy Mater. 2015, 5, 1500721; b) Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao, A. Centrone, J. Huang, Adv. Energy Mater. 2015, 5, 1500615; c) J. Haruyama, K. Sodeyama, L. Han, Y. Tateyama, J. Am. Chem. Soc. 2015, 137, 10048.
- 38a) X.-J. She, C. Chen, G. Divitini, B. Zhao, Y. Li, J. Wang, J. F. Orri, L. Cui, W. Xu, J. Peng, S. Wang, A. Sadhanala, H. Sirringhaus, Nat. Electron. 2020, 3, 694; b) Y. Zhu, Q. Cui, J. Chen, Z. Shi, X. Zhao, C. Xu, ACS Appl. Mater. Interfaces 2021, 13, 6820.
- 39a) E. J. Yoo, M. Lyu, J.-H. Yun, C. J. Kang, Y. J. Choi, L. Wang, Adv. Mater. 2015, 27, 6170; b) C. Gu, J.-S. Lee, ACS Nano 2016, 10, 5413; c) Y. Liu, F. Li, Z. Chen, T. Guo, C. Wu, T. W. Kim, Vacuum 2016, 130, 109.
- 40I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, R. Waser, Nat. Commun. 2013, 4, 1771.
- 41Y. Imanishi, S. Kika, T. Nakaoka, AIP Adv. 2016, 6, 075003.
- 42R. Midya, Z. Wang, J. Zhang, S. E. Savel'ev, C. Li, M. Rao, M. H. Jang, S. Joshi, H. Jiang, P. Lin, K. Norris, N. Ge, Q. Wu, M. Barnell, Z. Li, H. L. Xin, R. S. Williams, Q. Xia, J. J. Yang, Adv. Mater. 2017, 29, 1604457.
- 43Z. Wang, S. Joshi, S. E. Savel'ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J. P. Strachan, Z. Li, Q. Wu, M. Barne, G.-L. Li, H. L. Xin, R. S. Williams, Q. Xia, J. J. Yang, Nat. Mater. 2016, 16, 101.
- 44a) Z. Yao, L. Pan, L. Liu, J. Zhang, Q. Lin, Y. Ye, Z. Zhang, S. Xiang, B. Chen, Sci. Adv. 2019, 5, eaaw4515; b) J. H. Yoon, S. J. Song, I.-H. Yoo, J. Y. Seok, K. J. Yoon, D. E. Kwon, T. H. Park, C. S. Hwang, Adv. Funct. Mater. 2014, 24, 5086.