A New Hybrid Lead-Free Metal Halide Piezoelectric for Energy Harvesting and Human Motion Sensing
Tian-Meng Guo
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorYong-Ji Gong
College of Materials and Metallurgy, Guizhou University, Guiyang, 550025 China
Search for more papers by this authorZhi-Gang Li
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorYi-Ming Liu
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Wei Li
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhao-Yang Li
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xian-He Bu
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorTian-Meng Guo
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorYong-Ji Gong
College of Materials and Metallurgy, Guizhou University, Guiyang, 550025 China
Search for more papers by this authorZhi-Gang Li
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorYi-Ming Liu
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Wei Li
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhao-Yang Li
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xian-He Bu
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorDedicated to the 100th anniversary of Chemistry at Nankai University
Abstract
Hybrid organic–inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising application potential in flexible sensing and self-powered energy harvesting devices. Although some hybrid piezoelectrics are discovered, most of their structures are limited by the perovskite-type and often contain lead. Herein, the synthesis, structure, and piezoelectric properties of a new hybrid lead-free metal halide, (BTMA)2CoBr4 (BTMA = benzyltrimethylammonium) are reported. The experimental and theoretical results demonstrate that this material simply composed of [CoBr4]2− tetrahedra and BTMA+ cations exhibits significant piezoelectricity (d22 = 5.14, d25 = 12.40 pC N−1), low Young's and shear moduli (4.11–17.56 GPa; 1.86–7.91 GPa). Moreover, the (BTMA)2CoBr4/PDMS (PDMS = polydimethylsiloxane) composite thin films are fabricated and optimized. The 10% (BTMA)2CoBr4/PDMS-based flexible devices show attractive performance in energy harvesting with an open-circuit voltage of 19.70 V, short-circuit current of 4.24 µA, and powder density of 11.72 µW cm−2, catching up with those of piezoelectric ceramic composites. Meanwhile, these film devices show excellent capability in accurately sensing human body motions, such as finger bending and tapping. This work demonstrates that (BTMA)2CoBr4 and related piezoelectric lead-free halides can be promising molecular materials in modern energy and sensing applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that supports the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202103829-sup-0001-SuppMat.pdf1.8 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Zhou, N. Wang, T. Yang, L. Wang, X. Cao, Z. L. Wang, Mater. Horiz. 2020, 7, 2158.
- 2A. M. Manjón-Sanz, M. R. Dolgos, Chem. Mater. 2018, 30, 8718.
- 3C.-B. Eom, S. Trolier-McKinstry, MRS Bull. 2012, 37, 1007.
- 4S. D. Mahapatra, P. C. Mohapatra, A. I. Aria, G. Christie, Y. K. Mishra, S. Hofmann, V. K. Thakur, Adv. Sci. 2021, 8, 2100864.
- 5J. Li, L. Fang, B. Sun, X. Li, S. H. Kang, J. Electrochem. Soc. 2020, 167, 037561.
- 6N. Sezer, M. Koç, Nano Energy 2021, 80, 105567.
- 7Z. Zhao, Y. Dai, S. X. Dou, J. Liang, Mater. Today Energy 2021, 20, 100690.
- 8Q. Pan, Y.-A. Xiong, T.-T. Sha, Y.-M. You, Mater. Chem. Front. 2021, 5, 44.
- 9Y. Zhang, X.-J. Song, Z.-X. Zhang, D.-W. Fu, R.-G. Xiong, Matter 2020, 2, 697.
- 10Z.-X. Zhang, H.-Y. Zhang, W. Zhang, X.-G. Chen, H. Wang, R.-G. Xiong, J. Am. Chem. Soc. 2020, 142, 17787.
- 11W.-Q. Liao, D. Zhao, Y.-Y. Tang, Y. Zhang, P.-F. Li, P.-P. Shi, X.-G. Chen, Y.-M. You, R.-G. Xiong, Science 2019, 363, 1206.
- 12X.-G. Chen, X.-J. Song, Z.-X. Zhang, P.-F. Li, J.-Z. Ge, Y.-Y. Tang, J.-X. Gao, W.-Y. Zhang, D.-W. Fu, Y.-M. You, R.-G. Xiong, J. Am. Chem. Soc. 2020, 142, 1077.
- 13J. F. Tressler, S. Alkoy, R. E. Newnham, J. Electroceram. 1998, 2, 257.
- 14Y.-M. You, W.-Q. Liao, D. Zhao, H.-Y. Ye, Y. Zhang, Q. Zhou, X. Niu, J. Wang, P.-F. Li, D.-W. Fu, Z. Wang, S. Gao, K. Yang, J.-M. Liu, J. Li, Y. Yan, R.-G. Xiong, Science 2017, 357, 306.
- 15C. Shi, J.-J. Ma, J.-Y. Jiang, M.-M. Hua, Q. Xu, H. Yu, Y. Zhang, H.-Y. Ye, J. Am. Chem. Soc. 2020, 142, 9634.
- 16G. Huang, A. A. Khan, M. M. Rana, C. Xu, S. Xu, R. Saritas, S. Zhang, E. Abdel-Rahmand, P. Turban, S. Ababou-Girard, C. Wang, D. Ban, ACS Energy Lett. 2021, 6, 16.
- 17S. Hajra, M. Sahu, D. Oh, H. J. Kim, Ceram. Int. 2021, 47, 15695.
- 18M. Sahu, S. Hajra, J. Bijelic, D. Oh, I. Djerdj, H. J. Kim, Mater. Today Energy 2021, 20, 100639.
- 19M. Sahu, S. Hajra, K. Lee, P. L. Deepti, K. Mistewicz, H. J. Kim, Crystals 2021, 11, 85.
- 20U. Erturun, A. A. Eisape, S. H. Kang, J. E. West, Appl. Phys. Lett. 2021, 118, 063902.
- 21H. Chen, L. Zhou, Z. Fang, S. Wang, T. Yang, L. Zhu, X. Hou, H. Wang, Z. L. Wang, Adv. Funct. Mater. 2021, 31, 2011073.
- 22D. B. Kim, K. H. Park, Y. S. Cho, Energy Environ. Sci. 2020, 13, 2077.
- 23Y.-J. Kim, T.-V. Dang, H.-J. Choi, B.-J. Park, J.-H. Eom, H.-A. Song, D. Seol, Y. Kim, S.-H. Shin, J. Nah, S.-G. Yoon, J. Mater. Chem. A 2016, 4, 756.
- 24A. A. Khan, G. Huang, M. M. Rana, N. Mei, M. Biondi, S. Rassel, N. Tanguy, B. Sun, Z. Leonenko, N. Yan, C. Wang, S. Xu, D. Ban, Nano Energy 2021, 86, 106039.
- 25S. Deswal, S. K. Singh, P. Rambabu, P. Kulkarni, G. Vaitheeswaran, B. Praveenkumar, S. Ogale, R. Boomishankar, Chem. Mater. 2019, 31, 4545.
- 26S. Deswal, S. K. Singh, R. Pandey, P. Nasa, D. Kabra, B. Praveenkumar, S. Ogale, R. Boomishankar, Chem. Mater. 2020, 32, 8333.
- 27S. Ippili, V. Jella, J. Kim, S. Hong, S. G. Yoon, ACS Appl. Mater. Interfaces 2020, 12, 16469.
- 28V. Jella, S. Ippili, S.-G. Yoon, ACS Appl. Electron. Mater. 2020, 2, 2579.
- 29D. J. Carter, P. Raiteri, K. R. Barnard, R. Gielink, M. Mocerino, B. W. Skelton, J. G. Vaughan, M. I. Ogden, A. L. Rohl, CrystEngComm 2017, 19, 2207.
- 30J.-X. Gao, W.-Y. Zhang, Z.-G. Wu, Y.-X. Zheng, D.-W. Fu, J. Am. Chem. Soc. 2020, 142, 4756.
- 31Z.-X. Zhang, C.-Y. Su, J.-X. Gao, T. Zhang, D.-W. Fu, Sci. China Mater. 2021, 64, 706.
- 32T.-M. Guo, F.-F. Gao, Z.-G. Li, Y. Liu, M.-H. Yu, W. Li, APL Mater. 2020, 8, 101106.
- 33M. T. Martin, L. Dunn, J. Am. Ceram. Soc. 1993, 76, 1697.
- 34L.-J. Ji, S.-J. Sun, Y. Qin, K. Li, W. Li, Coord. Chem. Rev. 2019, 391, 15.
- 35P. S. Ghosh, S. Lisenkov, I. Ponomareva, Phys. Rev. Lett. 2020, 125, 207601.
- 36Z.-X. Wang, H. Zhang, F. Wang, H. Cheng, W.-H. He, Y.-H. Liu, X.-Q. Huang, P.-F. Li, J. Am. Chem. Soc. 2020, 142, 12857.
- 37L.-C. An, K. Li, Z.-G. Li, S. Zhu, Q. Li, Z.-Z. Zhang, L.-J. Ji, W. Li, X.-H. Bu, Small 2021, 17, 2006021.
- 38J.-H. Fan, Y. Qin, M. Azeem, Z.-Z. Zhang, Z.-G. Li, N. Sun, Z.-Q. Yao, W. Li, Dalton Trans. 2021, 50, 2648.
- 39H. Wang, H. Liu, Z. Zhang, Z. Liu, Z. Lv, T. Li, W. Ju, H. Li, X. Cai, H. Han, npj Comput. Mater. 2019, 5, 17.
- 40Z. G. Li, K. Li, L. Y. Dong, T. M. Guo, M. Azeem, W. Li, X. H. Bu, Research 2021, 2021, 9850151.
- 41Y.-L. Zeng, X.-Q. Huang, C.-R. Huang, H. Zhang, F. Wang, Z.-X. Wang, Angew. Chem., Int. Ed. 2021, 60, 10730.
- 42D.-W. Fu, H.-L. Cai, Y. Liu, Q. Ye, W. Zhang, Y. Zhang, X.-Y. Chen, G. Giovannetti, M. Capone, J. Li, R.-G. Xiong, Science 2013, 339, 425.
- 43C.-F. Wang, H. Li, M.-G. Li, Y. Cui, X. Song, Q.-W. Wang, J.-Y. Jiang, M.-M. Hua, Q. Xu, K. Zhao, H.-Y. Ye, Y. Zhang, Adv. Funct. Mater. 2021, 31, 2009457.
- 44J. Li, Z. Zhu, L. Fang, S. Guo, U. Erturun, Z. Zhu, J. E. West, S. Ghosh, S. H. Kang, Nanoscale 2017, 9, 14215.
- 45S. Hajra, A. Tripathy, B. K. Panigrahi, R. N. P. Choudhary, Mater. Res. Express 2019, 6, 076304.
- 46J. Bijelić, A. Stanković, M. Medvidović-Kosanović, B. Marković, P. Cop, Y. Sun, S. Hajra, M. Sahu, J. Vukmirović, D. Marković, Á. Kukovecz, Z. Jagličić, B. M. Smarsly, I. Djerdj, J. Phys. Chem. C 2020, 124, 12794.
- 47E. S. Hosseini, L. Manjakkal, D. Shakthivel, R. Dahiya, ACS Appl. Mater. Interfaces 2020, 12, 9008.
- 48N. Wang, W. Dou, S. Hao, Y. Cheng, D. Zhou, X. Huang, C. Jiang, X. Cao, Nano Energy 2019, 56, 868.
- 49J. Jiang, S. Tu, R. Fu, J. Li, F. Hu, B. Yan, Y. Gu, S. Chen, ACS Appl. Mater. Interfaces 2020, 12, 33989.
- 50L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, J. A. Rogers, Nat. Commun. 2013, 4, 1633.
- 51O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339.
- 52G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3.
- 53G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3.
- 54G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 55G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169.
- 56G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
- 57J. Feng, APL Mater. 2014, 2, 081801.
- 58Y. K. Zhang, W. T. Yang, Phys. Rev. Lett. 1998, 80, 890.
- 59Y. L. Page, P. Saxe, Phys. Rev. B 2002, 65, 104104.