Electronic Structure Regulation of Single-Atom Catalysts for Electrochemical Oxygen Reduction to H2O2
Jingjing Liu
State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Centre of the Ministry of Education and College of Chemistry, and Chemical Engineering, Hunan University, Changsha, 410082 China
Search for more papers by this authorZhichao Gong
State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Centre of the Ministry of Education and College of Chemistry, and Chemical Engineering, Hunan University, Changsha, 410082 China
Search for more papers by this authorMinmin Yan
State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Centre of the Ministry of Education and College of Chemistry, and Chemical Engineering, Hunan University, Changsha, 410082 China
Search for more papers by this authorGuanchao He
State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Centre of the Ministry of Education and College of Chemistry, and Chemical Engineering, Hunan University, Changsha, 410082 China
Search for more papers by this authorHaisheng Gong
State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Centre of the Ministry of Education and College of Chemistry, and Chemical Engineering, Hunan University, Changsha, 410082 China
Search for more papers by this authorCorresponding Author
Gonglan Ye
State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Centre of the Ministry of Education and College of Chemistry, and Chemical Engineering, Hunan University, Changsha, 410082 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Huilong Fei
State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Centre of the Ministry of Education and College of Chemistry, and Chemical Engineering, Hunan University, Changsha, 410082 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJingjing Liu
State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Centre of the Ministry of Education and College of Chemistry, and Chemical Engineering, Hunan University, Changsha, 410082 China
Search for more papers by this authorZhichao Gong
State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Centre of the Ministry of Education and College of Chemistry, and Chemical Engineering, Hunan University, Changsha, 410082 China
Search for more papers by this authorMinmin Yan
State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Centre of the Ministry of Education and College of Chemistry, and Chemical Engineering, Hunan University, Changsha, 410082 China
Search for more papers by this authorGuanchao He
State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Centre of the Ministry of Education and College of Chemistry, and Chemical Engineering, Hunan University, Changsha, 410082 China
Search for more papers by this authorHaisheng Gong
State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Centre of the Ministry of Education and College of Chemistry, and Chemical Engineering, Hunan University, Changsha, 410082 China
Search for more papers by this authorCorresponding Author
Gonglan Ye
State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Centre of the Ministry of Education and College of Chemistry, and Chemical Engineering, Hunan University, Changsha, 410082 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Huilong Fei
State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Centre of the Ministry of Education and College of Chemistry, and Chemical Engineering, Hunan University, Changsha, 410082 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Electrochemical synthesis of hydrogen peroxide (H2O2) via the 2-electron oxygen reduction reaction (ORR) has emerged as a promising alternative to the energy-intensive anthraquinone process and catalysts combining high selectivity with superior activity are crucial for enhancing the efficiency of H2O2 electrosynthesis. In recent years, single-atom catalysts (SACs) with the merits of maximum atom utilization efficiency, tunable electronic structure, and high mass activity have attracted extensive attention for the selective reduction of O2 to H2O2. Although considerable improvements are made in the performance of SACs toward the 2-electron ORR process, the principles for modulating the catalytic properties of SACs by adjusting the electronic structure remain elusive. In this review, the regulation strategies for optimizing the 2-electron ORR activity and selectivity of SACs by different methods of electronic structure tuning, including the altering of the central metal atoms, the modulation of the coordinated atoms, the substrate effect, and alloy engineering are summarized. Finally, the challenges and future prospects of advanced SACs for H2O2 electrosynthesis via the 2-electron ORR process are proposed.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1S. C. Perry, D. Pangotra, L. Vieira, L. I. Csepei, V. Sieber, L. Wang, C. P. de Leon, F. C. Walsh, Nat. Rev. Chem. 2019, 3, 442.
- 2R. Hage, A. Lienke, Angew. Chem., Int. Ed. 2005, 45, 206.
- 3R. Ciriminna, L. Albanese, F. Meneguzzo, M. Pagliaro, ChemSusChem 2016, 9, 3374.
- 4J. Tang, T. Zhao, D. Solanki, X. Miao, W. Zhou, S. Hu, Joule 2021, 5, 1432.
- 5S. Hu, Sustainable Energy Fuels 2019, 3, 101.
- 6J. M. Campos-Martin, G. Blanco-Brieva, J. L. Fierro, Angew. Chem., Int. Ed. 2006, 45, 6962.
- 7V. Viswanathan, H. A. Hansen, J. Rossmeisl, J. K. Norskov, J. Phys. Chem. Lett. 2012, 3, 2948.
- 8N. Ramaswamy, S. Mukerjee, J. Phys. Chem. C 2011, 115, 18015.
- 9S. Siahrostami, S. J. Villegas, A. H. Bagherzadeh Mostaghimi, S. Back, A. B. Farimani, H. Wang, K. A. Persson, J. Montoya, ACS Catal. 2020, 10, 7495.
- 10J. Gao, B. Liu, ACS Mater. Lett. 2020, 2, 1008.
- 11X. Zhao, Y. Liu, J. Am. Chem. Soc. 2021, 143, 9423.
- 12C. H. Choi, H. C. Kwon, S. Yook, H. Shin, H. Kim, M. Choi, J. Phys. Chem. C 2014, 118, 30063.
- 13Y. Sun, L. Han, P. Strasser, Chem. Soc. Rev. 2020, 49, 6605.
- 14B. Q. Li, C. X. Zhao, J. N. Liu, Q. Zhang, Adv. Mater. 2019, 31, 1808173.
- 15F. Vines, J. R. Gomes, F. Illas, Chem. Soc. Rev. 2014, 43, 4922.
- 16A. Verdaguer-Casadevall, D. Deiana, M. Karamad, S. Siahrostami, P. Malacrida, T. W. Hansen, J. Rossmeisl, I. Chorkendorff, I. E. Stephens, Nano Lett. 2014, 14, 1603.
- 17Z. Zheng, Y. H. Ng, D. W. Wang, R. Amal, Adv. Mater. 2016, 28, 9949.
- 18B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634.
- 19S. Ji, Y. Chen, X. Wang, Z. Zhang, D. Wang, Y. Li, Chem. Rev. 2020, 120, 11900.
- 20H. Jeong, S. Shin, H. Lee, ACS Nano 2020, 14, 14355.
- 21H. Y. Zhuo, X. Zhang, J. X. Liang, Q. Yu, H. Xiao, J. Li, Chem. Rev. 2020, 120, 12315.
- 22C. Tang, Y. Jiao, B. Shi, J. N. Liu, Z. Xie, X. Chen, Q. Zhang, S. Z. Qiao, Angew. Chem., Int. Ed. 2020, 59, 9171.
- 23Y. Wang, R. Shi, L. Shang, G. I. N. Waterhouse, J. Zhao, Q. Zhang, L. Gu, T. Zhang, Angew. Chem., Int. Ed. 2020, 59, 13057.
- 24S. Yang, J. Kim, Y. J. Tak, A. Soon, H. Lee, Angew. Chem., Int. Ed. 2016, 55, 2058.
- 25H. Fei, J. Dong, D. Chen, T. Hu, X. Duan, I. Shakir, Y. Huang, X. Duan, Chem. Soc. Rev. 2019, 48, 5207.
- 26Y. He, S. Liu, C. Priest, Q. Shi, G. Wu, Chem. Soc. Rev. 2020, 49, 3484.
- 27Y. H. He, S. Hwang, D. A. Cullen, M. A. Uddin, L. Langhorst, B. Y. Li, S. Karakalos, A. J. Kropf, E. C. Wegener, J. Sokolowski, M. J. Chen, D. Myers, D. Su, K. L. More, G. F. Wang, S. Litster, G. Wu, Energy Environ. Sci. 2019, 12, 250.
- 28N. Zhang, T. P. Zhou, M. L. Chen, H. Feng, R. L. Yuan, C. A. Zhong, W. S. Yan, Y. C. Tian, X. J. Wu, W. S. Chu, C. Z. Wu, Y. Xie, Energy Environ. Sci. 2020, 13, 111.
- 29X. Wan, X. F. Liu, Y. C. Li, R. H. Yu, L. R. Zheng, W. S. Yan, H. Wang, M. Xu, J. L. Shui, Nat. Catal. 2019, 2, 259.
- 30S. H. Lee, J. Kim, D. Y. Chung, J. M. Yoo, H. S. Lee, M. J. Kim, B. S. Mun, S. G. Kwon, Y. E. Sung, T. Hyeon, J. Am. Chem. Soc. 2019, 141, 2035.
- 31J. Guo, B. Li, Q. Zhang, Q. Liu, Z. Wang, Y. Zhao, J. Shui, Z. Xiang, Adv. Sci. 2021, 8, 2002249.
- 32S. Yang, Y. J. Tak, J. Kim, A. Soon, H. Lee, ACS Catal. 2017, 7, 1301.
- 33J. Zhang, H. Yang, B. Liu, Adv. Energy Mater. 2020, 11, 2002473.
- 34J. Yang, W. Li, D. Wang, Y. Li, Adv. Mater. 2020, 32, 2003300.
- 35X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen, R. You, C. Zhao, G. Wu, J. Wang, W. Huang, J. Yang, X. Hong, S. Wei, Y. Wu, Y. Li, Angew. Chem., Int. Ed. 2018, 57, 1944.
- 36C. C. Hou, L. Zou, L. Sun, K. Zhang, Z. Liu, Y. Li, C. Li, R. Zou, J. Yu, Q. Xu, Angew. Chem., Int. Ed. 2020, 59, 7384.
- 37J. Wan, Z. Zhao, H. Shang, B. Peng, W. Chen, J. Pei, L. Zheng, J. Dong, R. Cao, R. Sarangi, Z. Jiang, D. Zhou, Z. Zhuang, J. Zhang, D. Wang, Y. Li, J. Am. Chem. Soc. 2020, 142, 8431.
- 38X. G. Fu, N. Li, B. H. Ren, G. P. Jiang, Y. R. Liu, F. M. Hassan, D. Su, J. B. Zhu, L. Yang, Z. Y. Bai, Z. P. Cano, A. P. Yu, Z. W. Chen, Adv. Energy Mater. 2019, 9, 1803737.
- 39C. X. Zhao, B. Q. Li, J. N. Liu, Q. Zhang, Angew. Chem., Int. Ed. 2021, 60, 4448.
- 40R. Gao, J. Wang, Z.-F. Huang, R. Zhang, W. Wang, L. Pan, J. Zhang, W. Zhu, X. Zhang, C. Shi, J. Lim, J.-J. Zou, Nat. Energy 2021, 6, 614.
- 41Q. Yang, W. Xu, S. Gong, G. Zheng, Z. Tian, Y. Wen, L. Peng, L. Zhang, Z. Lu, L. Chen, Nat. Commun. 2020, 11, 5478.
- 42T. Sun, S. Mitchell, J. Li, P. Lyu, X. Wu, J. Perez-Ramirez, J. Lu, Adv. Mater. 2021, 33, 2003075.
- 43B. Lu, Q. Liu, S. Chen, ACS Catal. 2020, 10, 7584.
- 44Y. Wang, Y. Liu, W. Liu, J. Wu, Q. Li, Q. Feng, Z. Chen, X. Xiong, D. Wang, Y. Lei, Energy Environ. Sci. 2020, 13, 4609.
- 45Y. Sun, L. Silvioli, N. R. Sahraie, W. Ju, J. Li, A. Zitolo, S. Li, A. Bagger, L. Arnarson, X. Wang, T. Moeller, D. Bernsmeier, J. Rossmeisl, F. Jaouen, P. Strasser, J. Am. Chem. Soc. 2019, 141, 12372.
- 46J. J. Gao, H. B. Yang, X. Huang, S. F. Hung, W. Z. Cai, C. M. Jia, S. Miao, H. M. Chen, X. F. Yang, Y. Q. Huang, T. Zhang, B. Liu, Chem 2020, 6, 658.
- 47K. Jiang, S. Back, A. J. Akey, C. Xia, Y. Hu, W. Liang, D. Schaak, E. Stavitski, J. K. Norskov, S. Siahrostami, H. Wang, Nat. Commun. 2019, 10, 3997.
- 48E. Jung, H. Shin, B. H. Lee, V. Efremov, S. Lee, H. S. Lee, J. Kim, W. Hooch Antink, S. Park, K. S. Lee, S. P. Cho, J. S. Yoo, Y. E. Sung, T. Hyeon, Nat. Mater. 2020, 19, 436.
- 49C. H. Choi, M. Kim, H. C. Kwon, S. J. Cho, S. Yun, H. T. Kim, K. J. Mayrhofer, H. Kim, M. Choi, Nat. Commun. 2016, 7, 10922.
- 50J. S. Jirkovsky, I. Panas, E. Ahlberg, M. Halasa, S. Romani, D. J. Schiffrin, J. Am. Chem. Soc. 2011, 133, 19432.
- 51S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida, B. Wickman, M. Escudero-Escribano, E. A. Paoli, R. Frydendal, T. W. Hansen, I. Chorkendorff, I. E. Stephens, J. Rossmeisl, Nat. Mater. 2013, 12, 1137.
- 52C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Angew. Chem., Int. Ed. 2017, 56, 13944.
- 53K. Yuan, D. Lutzenkirchen-Hecht, L. Li, L. Shuai, Y. Li, R. Cao, M. Qiu, X. Zhuang, M. K. H. Leung, Y. Chen, U. Scherf, J. Am. Chem. Soc. 2020, 142, 2404.
- 54Y. L. Wang, S. Gurses, N. Felyey, A. Boubnov, S. S. Mao, C. X. Kronawitter, ACS Catal. 2019, 9, 8453.
- 55H. E. Kim, I. H. Lee, J. Cho, S. Shin, H. C. Ham, J. Y. Kim, H. Lee, ChemElectroChem 2019, 6, 4757.
- 56J. H. Kim, D. Shin, J. Lee, D. S. Baek, T. J. Shin, Y. T. Kim, H. Y. Jeong, J. H. Kwak, H. Kim, S. H. Joo, ACS Nano 2020, 14, 1990.
- 57G. Sievers, A. W. Jensen, J. Quinson, A. Zana, F. Bizzotto, M. Oezaslan, A. Dworzak, J. K. Kirkensgaard, T. E. L. Smitshuysen, S. Kadkhodazadeh, M. Juelsholt, K. M. Ø. Jensen, K. Anklam, H. Wan, J. Schafer, K. Cepe, M. Escudero-Escribano, J. Rossmeisl, A. Quade, V. Bruser, M. Arenz, Nat. Mater. 2021, 20, 208.
- 58X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. Wang, X. Duan, T. Mueller, Y. Huang, Science 2015, 348, 1230.
- 59G. Chen, P. Liu, Z. Liao, F. Sun, Y. He, H. Zhong, T. Zhang, E. Zschech, M. Chen, G. Wu, J. Zhang, X. Feng, Adv. Mater. 2020, 32, 1907399.
- 60X. Z. Song, N. Li, H. Zhang, H. Wang, L. Y. Wang, Z. Y. Bian, J. Power Sources 2019, 435, 226771.
- 61Y. Wang, Z. Zhang, X. Zhang, Y. Yuan, Z. Jiang, H. Zheng, Y.-G. Wang, H. Zhou, Y. Liang, CCS Chem. 2021, 3, 585.
10.31635/ccschem.021.202000590 Google Scholar
- 62J. Zhang, H. Yang, J. Gao, S. Xi, W. Cai, J. Zhang, P. Cui, B. Liu, Carbon Energy 2020, 2, 276.
- 63H. Xu, S. B. Zhang, J. Geng, G. Z. Wang, H. M. Zhang, Inorg. Chem. Front. 2021, 8, 2829.
- 64H. Xu, D. Cheng, D. Cao, X. C. Zeng, Nat. Catal. 2018, 1, 339.
- 65H. Fei, J. Dong, Y. Feng, C. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, P. An, W. Chen, Z. Guo, C. Lee, D. Chen, I. Shakir, M. Liu, T. Hu, Y. Li, A. I. Kirkland, X. Duan, Y. Huang, Nat. Catal. 2018, 1, 63.
- 66C. Tang, L. Chen, H. Li, L. Li, Y. Jiao, Y. Zheng, H. Xu, K. Davey, S. Z. Qiao, J. Am. Chem. Soc. 2021, 143, 7819.
- 67X. Song, N. Li, H. Zhang, L. Wang, Y. Yan, H. Wang, L. Wang, Z. Bian, ACS Appl. Mater. Interfaces 2020, 12, 17519.
- 68R. Shen, W. Chen, Q. Peng, S. Lu, L. Zheng, X. Cao, Y. Wang, W. Zhu, J. Zhang, Z. Zhuang, C. Chen, D. Wang, Y. Li, Chem 2019, 5, 2099.
- 69M. Ledendecker, E. Pizzutilo, G. Malta, G. V. Fortunato, K. J. J. Mayrhofer, G. J. Hutchings, S. J. Freakley, ACS Catal. 2020, 10, 5928.
- 70S. Shin, J. Kim, S. Park, H. E. Kim, Y. E. Sung, H. Lee, Chem. Commun. 2019, 55, 6389.
- 71T. W. van Deelen, C. Hernández Mejía, K. P. de Jong, Nat. Catal. 2019, 2, 955.
- 72J. Zhang, Y. Zhao, C. Chen, Y. C. Huang, C. L. Dong, C. J. Chen, R. S. Liu, C. Wang, K. Yan, Y. Li, G. Wang, J. Am. Chem. Soc. 2019, 141, 20118.
- 73Q. Li, W. Chen, H. Xiao, Y. Gong, Z. Li, L. Zheng, X. Zheng, W. Yan, W. C. Cheong, R. Shen, N. Fu, L. Gu, Z. Zhuang, C. Chen, D. Wang, Q. Peng, J. Li, Y. Li, Adv. Mater. 2018, 30, 1800588.
- 74H. Shen, E. Gracia-Espino, J. Ma, K. Zang, J. Luo, L. Wang, S. Gao, X. Mamat, G. Hu, T. Wagberg, S. Guo, Angew. Chem., Int. Ed. 2017, 56, 13800.
- 75Q. Zhang, X. Tan, N. M. Bedford, Z. Han, L. Thomsen, S. Smith, R. Amal, X. Lu, Nat. Commun. 2020, 11, 4181.
- 76T. Zhang, A. G. Walsh, J. Yu, P. Zhang, Chem. Soc. Rev. 2021, 50, 569.
- 77G. Giannakakis, M. Flytzani-Stephanopoulos, E. C. H. Sykes, Acc. Chem. Res. 2019, 52, 237.
- 78P. N. Duchesne, Z. Y. Li, C. P. Deming, V. Fung, X. Zhao, J. Yuan, T. Regier, A. Aldalbahi, Z. Almarhoon, S. Chen, D. E. Jiang, N. Zheng, P. Zhang, Nat. Mater. 2018, 17, 1033.
- 79Y. Peng, Z. Geng, S. Zhao, L. Wang, H. Li, X. Wang, X. Zheng, J. Zhu, Z. Li, R. Si, J. Zeng, Nano Lett. 2018, 18, 3785.
- 80A. Trimpalis, G. Giannakakis, S. Cao, M. Flytzani-Stephanopoulos, Catal. Today 2020, 355, 804.
- 81H. Li, W. R. Chai, G. Henkelman, J. Mater. Chem. A 2019, 7, 23868.
- 82J. J. Shan, J. L. Liu, M. W. Li, S. Lustig, S. Lee, M. Flytzani-Stephanopoulos, Appl. Catal., B 2018, 226, 534.
- 83G. Kyriakou, M. B. Boucher, A. D. Jewell, E. A. Lewis, T. J. Lawton, A. E. Baber, H. L. Tierney, M. Flytzani-Stephanopoulos, E. C. H. Sykes, Science 2012, 335, 1209.
- 84S. K. Sahoo, Y. Ye, S. Lee, J. Park, H. Lee, J. Lee, J. W. Han, ACS Energy Lett. 2018, 4, 126.
- 85W. Xu, Z. Liang, S. Gong, B. Zhang, H. Wang, L. Su, X. Chen, N. Han, Z. Tian, T. Kallio, L. Chen, Z. Lu, X. Sun, ACS Sustainable Chem. Eng. 2021, 9, 7120.
- 86M. Suk, M. W. Chung, M. H. Han, H.-S. Oh, C. H. Choi, Catal. Today 2021, 359, 99.
- 87D. A. Kuznetsov, Z. Chen, P. M. Abdala, O. V. Safonova, A. Fedorov, C. R. Muller, J. Am. Chem. Soc. 2021, 143, 5771.