In Situ Magnetic Alignment of a Slurry of Tandem Semiconductor Microwires Using a Ni Catalyst
Saumya Gulati
Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292 USA
Search for more papers by this authorMatthew C. Mulvehill
Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292 USA
Search for more papers by this authorSahar Pishgar
Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292 USA
Search for more papers by this authorCorresponding Author
Joshua M. Spurgeon
Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292 USA
E-mail: [email protected]
Search for more papers by this authorSaumya Gulati
Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292 USA
Search for more papers by this authorMatthew C. Mulvehill
Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292 USA
Search for more papers by this authorSahar Pishgar
Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292 USA
Search for more papers by this authorCorresponding Author
Joshua M. Spurgeon
Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292 USA
E-mail: [email protected]
Search for more papers by this authorAbstract
Slurries of semiconductor particles individually capable of unassisted light-driven water-splitting are modeled to have a promising path to low-cost solar hydrogen generation, but they have had poor efficiencies. Tandem microparticle systems are a clear direction to pursue to increase efficiency. However, light absorption must be carefully managed in a tandem to prevent current mismatch in the subcells, which presents a possible challenge for tandem microwire particles suspended in a liquid. In this work, a Ni-catalyzed Si/TiO2 tandem microwire slurry is used as a stand-in for an ideal bandgap combination to demonstrate proof-of-concept in situ alignment of unassisted water-splitting microwires with an external magnetic field. The Ni hydrogen evolution catalyst is selectively photodeposited at the exposed Si microwire core to serve as the cathode site as well as a handle for magnetic orientation. The frequency distribution of the suspended microwire orientation angles is determined as a function of magnetic field strength under dispersion with and without uplifting microbubbles. After magnetizing the Ni bulb, tandem microwires can be highly aligned in water under a magnetic field despite active dispersion from bubbling or convection.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202103822-sup-0001-SuppMat.pdf952.5 KB | Supporting information |
smll202103822-sup-0002-VideoS1.avi38.8 MB | Supporting video1 |
smll202103822-sup-0003-VideoS2.avi37.3 MB | Supporting video2 |
smll202103822-sup-0004-VideoS3.avi17.2 MB | Supporting video3 |
smll202103822-sup-0005-VideoS4.avi36.5 MB | Supporting video4 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Fujishima, K. Honda, Nature 1972, 238, 37.
- 2J. W. Ager, M. R. Shaner, K. A. Walczak, I. D. Sharp, S. Ardo, Energy Environ. Sci. 2015, 8, 2811.
- 3M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.
- 4J. Y. Jia, L. C. Seitz, J. D. Benck, Y. J. Huo, Y. S. Chen, J. W. D. Ng, T. Bilir, J. S. Harris, T. F. Jaramillo, Nat. Commun. 2016, 7, 13237.
- 5M. R. Shaner, H. A. Atwater, N. S. Lewis, E. W. McFarland, Energy Environ. Sci. 2016, 9, 2354.
- 6B. D. James, G. N. Baum, J. Perez, K. N. Baum, US Dep. Energy 2009, 71.
- 7B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. B. Chen, T. G. Deutsch, B. D. James, K. N. Baum, G. N. Baum, S. Ardo, H. L. Wang, E. Miller, T. F. Jaramillo, Energy Environ. Sci. 2013, 6, 1983.
- 8D. M. Fabian, S. Hu, N. Singh, F. A. Houle, T. Hisatomi, K. Domen, F. E. Osterlohf, S. Ardo, Energy Environ. Sci. 2015, 8, 2825.
- 9Y. Goto, T. Hisatomi, Q. Wang, T. Higashi, K. Ishikiriyama, T. Maeda, Y. Sakata, S. Okunaka, H. Tokudome, M. Katayama, S. Akiyama, H. Nishiyama, Y. Inoue, T. Takewaki, T. Setoyama, T. Minegishi, T. Takata, T. Yamada, K. Domen, Joule 2018, 2, 509.
- 10H. Lyu, T. Hisatomi, Y. Goto, M. Yoshida, T. Higashi, M. Katayama, T. Takata, T. Minegishi, H. Nishiyama, T. Yamada, Y. Sakata, K. Asakura, K. Domen, Chem. Sci. 2019, 10, 3196.
- 11B. Moss, Q. Wang, K. T. Butler, R. Grau-Crespo, S. Selim, A. Regoutz, T. Hisatomi, R. Godin, D. J. Payne, A. Kafizas, K. Domen, L. Steier, J. R. Durrant, Nat. Mater. 2021, 20, 511.
- 12T. Takata, J. Z. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 2020, 581, 411.
- 13Q. Wang, T. Hisatomi, Q. X. Jia, H. Tokudome, M. Zhong, C. Z. Wang, Z. H. Pan, T. Takata, M. Nakabayashi, N. Shibata, Y. B. Li, I. D. Sharp, A. Kudo, T. Yamada, K. Domen, Nat. Mater. 2016, 15, 611.
- 14Q. Wang, T. Hisatomi, Y. Suzuk, Z. H. Pan, J. Seo, M. Katayama, T. Minegishi, H. Nishiyama, T. Takata, K. Seki, A. Kudo, T. Yamada, K. Domen, J. Am. Chem. Soc. 2017, 139, 1675.
- 15Z. Wang, Y. Luo, T. Hisatomi, J. J. M. Vequizo, S. Suzuki, S. S. Chen, M. Nakabayashi, L. H. Lin, Z. H. Pan, N. Kariya, A. Yamakata, N. Shibata, T. Takata, K. Teshima, K. Domen, Nat. Commun. 2021, 12, 1005.
- 16Z. Wang, Y. Inoue, T. Hisatomi, R. Ishikawa, Q. Wang, T. Takata, S. S. Chen, N. Shibata, Y. Ikuhara, K. Domen, Nat. Catal. 2018, 1, 756.
- 17L. B. Liao, Q. H. Zhang, Z. H. Su, Z. Z. Zhao, Y. N. Wang, Y. Li, X. X. Lu, D. G. Wei, G. Y. Feng, Q. K. Yu, X. J. Cai, J. M. Zhao, Z. F. Ren, H. Fang, F. Robles-Hernandez, S. Baldelli, J. M. Bao, Nat. Nanotechnol. 2014, 9, 69.
- 18C. X. Xiang, A. Z. Weber, S. Ardo, A. Berger, Y. K. Chen, R. Coridan, K. T. Fountaine, S. Haussener, S. Hu, R. Liu, N. S. Lewis, M. A. Modestino, M. M. Shaner, M. R. Singh, J. C. Stevens, K. Sun, K. Walczak, Angew. Chem., Int. Ed. 2016, 55, 12974.
- 19S. Hu, C. X. Xiang, S. Haussener, A. D. Berger, N. S. Lewis, Energy Environ. Sci. 2013, 6, 2984.
- 20B. M. Kayes, H. A. Atwater, N. S. Lewis, J. Appl. Phys. 2005, 97, 114302.
- 21S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, N. S. Lewis, Science 2010, 327, 185.
- 22J. M. Spurgeon, H. A. Atwater, N. S. Lewis, J. Phys. Chem. C 2008, 112, 6186.
- 23B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, H. A. Atwater, Appl. Phys. Lett. 2007, 91, 103110.
- 24J. M. Spurgeon, K. E. Plass, B. M. Kayes, B. S. Brunschwig, H. A. Atwater, N. S. Lewis, Appl. Phys. Lett. 2008, 93, 032112.
- 25M. R. Shaner, M. T. McDowell, A. Pien, H. A. Atwater, N. S. Lewis, J. Electrochem. Soc. 2016, 163, H261.
- 26M. R. Shaner, K. T. Fountaine, S. Ardo, R. H. Coridan, H. A. Atwater, N. S. Lewis, Energy Environ. Sci. 2014, 7, 779.
- 27P. Chakthranont, T. R. Hellstern, J. M. McEnaney, T. F. Jaramillo, Adv. Energy Mater. 2017, 7, 1701515.
- 28J. M. Spurgeon, M. G. Walter, J. Zhou, P. A. Kohl, N. S. Lewis, Energy Environ. Sci. 2011, 4, 1772.
- 29S. Ardo, S. H. Park, E. L. Warren, N. S. Lewis, Energy Environ. Sci. 2015, 8, 1484.
- 30J. M. Spurgeon, S. W. Boettcher, M. D. Kelzenberg, B. S. Brunschwig, H. A. Atwater, N. S. Lewis, Adv. Mater. 2010, 22, 3277.
- 31J. A. Beardslee, B. Sadtler, N. S. Lewis, ACS Nano 2012, 6, 10303.
- 32C. C. L. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2015, 137, 4347.
- 33S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, N. S. Lewis, J. Am. Chem. Soc. 2011, 133, 1216.
- 34L. G. Kong, Y. M. Dong, P. P. Jiang, G. L. Wang, H. Z. Zhang, N. Zhao, J. Mater. Chem. A 2016, 4, 9998.
- 35B. D. Cullity, C. D. Graham, Introduction to Magnetic Materials, 2nd ed., John Wiley & Sons, Hoboken, New Jersey 2009.
- 36L. Trotochaud, T. J. Mills, S. W. Boettcher, J. Phys. Chem. Lett. 2013, 4, 931.
- 37W. Q. Gao, J. B. Lu, S. Zhang, X. F. Zhang, Z. X. Wang, W. Qin, J. J. Wang, W. J. Zhou, H. Liu, Y. H. Sang, Adv. Sci. 2019, 6, 1901244.
- 38J. Li, Q. Pei, R. Y. Wang, Y. Zhou, Z. M. Zhang, Q. Q. Cao, D. H. Wang, W. B. Mi, Y. W. Du, ACS Nano 2018, 12, 3351.
- 39L. Pan, M. H. Ai, C. Y. Huang, L. Yin, X. Liu, R. R. Zhang, S. B. Wang, Z. Jiang, X. W. Zhang, J. J. Zou, W. B. Mi, Nat. Commun. 2020, 11, 418.
- 40R. Elbersen, W. Vijselaar, R. M. Tiggelaar, H. Gardeniers, J. Huskens, Adv. Energy Mater. 2016, 6, 1501728.
- 41S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, N. S. Lewis, Science 2014, 344, 1005.
- 42Y. H. Zhao, P. Westerik, R. Santbergen, E. Zoethout, H. Gardeniers, A. Bieberle-Hutter, Adv. Funct. Mater. 2020, 30, 1909157.
- 43B. Liu, E. S. Aydil, J. Am. Chem. Soc. 2009, 131, 3985.
- 44K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, N. S. Lewis, Adv. Mater. 2009, 21, 325.