ATP Suppression by pH-Activated Mitochondria-Targeted Delivery of Nitric Oxide Nanoplatform for Drug Resistance Reversal and Metastasis Inhibition
Yongyan Deng
MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027 P. R. China
Search for more papers by this authorFan Jia
MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027 P. R. China
Search for more papers by this authorXiaohui Chen
MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027 P. R. China
Search for more papers by this authorCorresponding Author
Qiao Jin
MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Jian Ji
MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorYongyan Deng
MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027 P. R. China
Search for more papers by this authorFan Jia
MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027 P. R. China
Search for more papers by this authorXiaohui Chen
MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027 P. R. China
Search for more papers by this authorCorresponding Author
Qiao Jin
MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Jian Ji
MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Mitochondria, which are important mediators for cancer initiation, growth, metastasis, and drug resistance, have been considered as a major target in cancer therapy. Herein, an acid-activated mitochondria-targeted drug nanocarrier is constructed for precise delivery of nitric oxide (NO) as an adenosine triphosphate (ATP) suppressor to amplify the therapeutic efficacy in cancer treatments. By combining α-cyclodextrin (α-CD) and acid-cleavable dimethylmaleic anhydride modified PEG conjugated mitochondria-targeting peptide, the nanocarrier shows prolonged blood circulation time and enhanced cellular uptake together with selectively restoring mitochondria-targeting capability under tumor extracellular pH (6.5). Such specific mitochondria-targeted delivery of NO proves crucial in inducing mitochondria dysfunction through facilitating mitochondrial membrane permeabilization and downregulating ATP level, which can inhibit P-glycoprotein-related bioactivities and formation of tumor-derived microvesicles to combat drug resistance and cancer metastasis. Therefore, this pioneering acid-activated mitochondria-targeted NO nanocarrier is supposed to be a malignant tumor opponent and may provide insights for diverse NO-relevant cancer treatments.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll202001747-sup-0001-SuppMat.pdf2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) L. Rajendran, H.-J. Knölker, K. Simons, Nat. Rev. Drug Discovery 2010, 9, 29; b) X. Guo, X. Wei, Y. Jing, S. Zhou, Adv. Mater. 2015, 27, 6450; c) A. Jhaveri, V. Torchilin, Expert Opin. Drug Delivery 2016, 13, 49; d) S. R. Jean, M. Ahmed, E. K. Lei, S. P. Wisnovsky, S. O. Kelley, Acc. Chem. Res. 2016, 49, 1893.
- 2a) A. R. Choudhurya, K. K. Singh, Semin. Cancer Biol. 2017, 47, 125; b) O. Lytovchenko, E. R. S. Kunji, Biochim. Biophys. Acta, Bioenerg. 2017, 1858, 641.
- 3a) X.-Q. Wang, M. Peng, C.-X. Li, Y. Zhang, M. Zhang, Y. Tang, M.-D. Liu, B.-R. Xie, X.-Z. Zhang, Nano Lett. 2018, 18, 6804; b) S. Vyas, E. Zaganjor, M. C. Haigis, Cell 2016, 166, 555.
- 4a) M. M. Gottesman, O. Lavi, M. D. Hall, J.-P. Gillet, Annu. Rev. Pharmacol. Toxicol. 2016, 56, 85; b) H. Han, Y. Hou, X. Chen, P. Zhang, M. Kang, Q. Jin, J. Ji, M. Gao, J. Am. Chem. Soc. 2020, 142, 4944.
- 5a) R. Guo, Y. Tian, Y. Wang, W. Yang, Adv. Funct. Mater. 2017, 27, 1606398; b) Z. Chen, T. Shi, L. Zhang, P. Zhu, M. Deng, C. Huang, T. Hu, L. Jiang, J. Li, Cancer Lett. 2016, 370, 153.
- 6P. S. Steeg, Nat. Rev. Cancer 2016, 16, 201.
- 7a) J. Ratajczak, M. Wysoczynski, F. Hayek, A. Janowska-Wieczorek, M. Z. Ratajczak, Leukemia 2006, 20, 1487; b) A. Becker, B. K. Thakur, J. M. Weiss, H. S. Kim, H. Peinado, D. Lyden, Cancer Cell 2016, 30, 836.
- 8T. Wang, D. M. Gilkes, N. Takano, L. Xiang, W. Luo, C. J. Bishop, P. Chaturvedi, J. J. Green, G. L. Semenza, Proc. Natl. Acad. Sci. USA 2014, 111, E3234.
- 9a) Z. Xu, D. Kong, X. He, L. Guo, X. Ge, X. Liu, H. Zhang, J. Li, Y. Yang, Z. Liu, Inorg. Chem. Front. 2018, 5, 2100; b) G. Yang, L. Xu, J. Xu, R. Zhang, G. Song, Y. Chao, L. Feng, F. Han, Z. Dong, B. Li, Z. Liu, Nano Lett. 2018, 18, 2475; c) P. Yu, H. Yu, C. Guo, Z. Cui, X. Chen, Q. Yin, P. Zhang, X. Yang, H. Cui, Y. Li, Acta Biomater. 2015, 14, 115.
- 10a) X.-J. Zhu, R.-F. Li, L. Xu, H. Yin, L. Chen, Y. Yuan, W. Zhong, J. Lin, Small 2019, 15, 1803428; b) X. Chen, Y. Li, S. Li, M. Gao, L. Ren, B. Z. Tang, Adv. Funct. Mater. 2018, 28, 1804362; c) Y. Wang, G. Wei, X. Zhang, X. Huang, J. Zhao, X. Guo, S. Zhou, Small 2018, 14, 1702994.
- 11a) J. Zielonka, J. Joseph, A. Sikora, M. Hardy, O. Ouari, J. Vasquez-Vivar, G. Cheng, M. Lopez, B. Kalyanaraman, Chem. Rev. 2017, 117, 10043; b) H. Tong, J. Du, H. Li, Q. Jin, Y. Wang, J. Ji, Chem. Commun. 2016, 52, 11935.
- 12a) D. Hu, Y. Deng, F. Jia, Q. Jin, J. Ji, ACS Nano 2020, 14, 347; b) L. Chen, S. F. Zhou, L. Su, J. Song, ACS Nano 2019, 13, 10887.
- 13a) L. Yu, P. Hu, Y. Chen, Adv. Mater. 2018, 30, 1801964; b) Z. Shen, K. He, Z. Ding, M. Zhang, Y. Yu, J. Hu, Macromolecules 2019, 52, 7668; c) S.-S. Wan, J.-Y. Zeng, H. Cheng, X.-Z. Zhang, Biomaterials 2018, 185, 51; d) X. Zhang, G. Tian, W. Yin, L. Wang, X. Zheng, L. Yan, J. Li, H. Su, C. Chen, Z. Gu, Y. Zhao, Adv. Funct. Mater. 2015, 25, 3049.
- 14a) J. Xu, F. Zeng, H. Wu, C. Hu, C. Yu, S. Wu, Small 2014, 10, 3750; b) V. Somasundaram, D. Basudhar, G. Bharadwaj, J. H. No, L. A. Ridnour, R. Y. S. Cheng, M. Fujita, D. D. Thomas, S. K. Anderson, D. W. McVicar, D. A. Wink, Antioxid. Redox Signaling 2019, 30, 1124; c) O. Fantappie, C. Sassoli, A. Tani, D. Nosi, S. Marchetti, L. Formigli, R. Mazzanti, J. Cell. Mol. Med. 2015, 19, 1410.
- 15a) G. C. Brown, Biochim. Biophys. Acta, Bioenerg. 2001, 1504, 46; b) G. C. Brown, V. Borutaite, Free Radical Biol. Med. 2002, 33, 1440; c) C. Riganti, B. Rolando, J. Kopecka, I. Campia, K. Chegaev, L. Lazzarato, A. Federico, R. Fruttero, D. Ghigo, Mol. Pharmaceutics 2013, 10, 161.
- 16E. S. Levy, D. P. Morales, J. V. Garcia, N. O. Reich, P. C. Ford, Chem. Commun. 2015, 51, 17692.
- 17a) W. Fan, B. C. Yung, X. Chen, Angew. Chem., Int. Ed. 2018, 57, 8383; b) X. Chen, F. Jia, Y. Li, Y. Deng, Y. Huang, W. Liu, Q. Jin, J. Ji, Biomaterials 2020, 246, 119999.
- 18Y. Deng, F. Jia, S. Chen, Z. Shen, Q. Jin, G. Fu, J. Ji, Biomaterials 2018, 187, 55.
- 19J.-Z. Du, X.-J. Du, C.-Q. Mao, J. Wang, J. Am. Chem. Soc. 2011, 133, 17560.
- 20a) S. P. Singh, J. S. Wishnok, M. Keshive, W. M. Deen, S. R. Tannenbaum, Proc. Natl. Acad. Sci. USA 1996, 93, 14428; b) N. Hogg, Free Radical Biol. Med. 2000, 28, 1478; c) R. J. Singh, N. Hogg, J. Joseph, B. Kalyanaraman, J. Biol. Chem. 1996, 271, 18596.
- 21a) Q. Jin, Y. Deng, X. Chen, J. Ji, ACS Nano 2019, 13, 954; b) J.-Z. Du, H.-J. Li, J. Wang, Acc. Chem. Res. 2018, 51, 2848.
- 22a) N. U. Khaliq, F. C. Sandra, D. Y. Park, J. Y. Lee, K. S. Oh, D. Kim, Y. Byun, I.-S. Kim, I. C. Kwon, S. Y. Kim, S. H. Yuk, Biomaterials 2016, 101, 131; b) P. Yousefpour, L. Ahn, J. Tewksbury, S. Saha, S. A. Costa, J. J. Bellucci, X. Li, A. Chilkoti, Small 2019, 15, 1804452; c) L. Shan, G. Gao, W. Wang, W. Tang, Z. Wang, Z. Yang, W. Fan, G. Zhu, K. Zhai, O. Jacobson, Y. Dai, X. Chen, Biomaterials 2019, 210, 62.