Designing Internal Hierarchical Porous Networks in Polymer Monoliths that Exhibit Rapid Removal and Photocatalytic Degradation of Aromatic Pollutants
Doyeon Kim
Department of Materials Science and Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
Search for more papers by this authorCorresponding Author
Hyungwoo Kim
School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 Korea
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Ji Young Chang
Department of Materials Science and Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
E-mail: [email protected], [email protected]
Search for more papers by this authorDoyeon Kim
Department of Materials Science and Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
Search for more papers by this authorCorresponding Author
Hyungwoo Kim
School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 Korea
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Ji Young Chang
Department of Materials Science and Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
This paper describes the preparation of 3D polymer monoliths containing internal hierarchical porosity. The porous networks are fabricated based on Pickering high-internal-phase emulsions (HIPEs) stabilized by microporous β-cyclodextrin-based polymer particles (CDPs) as the emulsifier; CDPs are facilely synthesized by the polyaddition reactions without the need for catalysts. The designed Pickering agents enable to form a bicontinuous internal phase in 8:2 cyclohexane–water v/v, and the oil droplets in the continuous water phase is found to be fairly stable up to 1 month. Furthermore, the addition of acrylamide and N,N'-methylenebis(acrylamide) results in polymer networks after in situ thermal polymerization at 60 °C in the water phase, and the monoliths include both interconnected macropores from the HIPE template and micro- and mesopores from the CDPs embedded at the interface. The porous monoliths rapidly absorb a variety of solvents taking advantage of multiscale porosity and amphiphilicity. Furthermore, the materials can be efficiently used for the removal of aromatic pollutants and then reused after washing and drying without the deterioration of performance. Also, they exhibit high photocatalytic capability and good recyclability as being used as a catalytic support when embedded with titanium dioxide (TiO2).
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201907555-sup-0001-SuppMat.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Zhang, J. Chen, Chem. Commun. 2009, 2217.
- 2G. Sun, Z. Li, T. Ngai, Angew. Chem., Int. Ed. 2010, 49, 2163.
- 3H. He, W. Li, M. Lamson, M. Zhong, D. Konkolewicz, C. M. Hui, K. Yaccato, T. Rappold, G. Sugar, N. E. David, K. Damodaran, S. Natesakhawat, H. Nulwala, K. Matyjaszewski, Polymer 2014, 55, 385.
- 4G. J. Lye, D. C. Stuckey, Colloids Surf. A 1998, 131, 119.
- 5H. Zhang, I. Hussain, M. Brust, A. I. Cooper, Chem. Commun. 2006, 2539.
- 6G. Akay, M. A. Birch, M. A. Bokhari, Biomaterials 2004, 25, 3991.
- 7M. Mazaj, N. Z. Logar, E. Žagar, S. Kovačič, J. Mater. Chem. A 2017, 5, 1967.
- 8J. M. Williams, Langmuir 1991, 7, 1370.
- 9X. Yao, Z. Liu, M. Ma, Y. Chao, Y. Gao, T. Kong, Small 2018, 14, 1802902.
- 10X. Huang, Y. Yang, J. Shi, H. T. Ngo, C. Shen, W. Du, Y. Wang, Small 2015, 11, 4876.
- 11X. Feng, X. Wang, D. Zhang, F. Feng, L. Yao, G. Ma, Small 2018, 14, 1703570.
- 12C. A. S. Burel, A. Alsayed, L. Malassis, C. B. Murray, B. Donnio, R. Dreyfus, Small 2017, 13, 1701925.
- 13K. Zhang, W. Wu, K. Guo, J. Chen, P. Zhang, Langmuir 2010, 26, 7971.
- 14M. Destribats, B. Faure, M. Birot, O. Babot, V. Schmitt, R. Backov, Adv. Funct. Mater. 2012, 22, 2642.
- 15M. Williams, S. P. Armes, P. Verstraete, J. Smets, Langmuir 2014, 30, 2703.
- 16B. Zhang, J. Zhang, C. Liu, L. Peng, X. Sang, B. Han, X. Ma, T. Luo, X. Tan, G. Yang, Sci. Rep. 2016, 6, 21401.
- 17H. Zhu, Q. Zhang, S. Zhu, Chem. - Eur. J. 2016, 22, 8751.
- 18C. Liu, J. Zhang, L. Zheng, J. Zhang, X. Sang, X. Kang, B. Zhang, T. Luo, X. Tan, B. Han, Angew. Chem., Int. Ed. 2016, 55, 11372.
- 19Y. He, F. Wu, X. Sun, R. Li, Y. Guo, C. Li, L. Zhang, F. Xing, W. Wang, J. Gao, ACS Appl. Mater. Interfaces 2013, 5, 4843.
- 20J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull, J. Huang, J. Am. Chem. Soc. 2010, 132, 8180.
- 21S. Zhang, J. Xu, J. Hu, C. Cui, H. Liu, Langmuir 2017, 33, 5015.
- 22T. Chen, P. J. Colver, S. A. F. Bon, Adv. Mater. 2007, 19, 2286.
- 23H. Duan, D. Wang, N. S. Sobal, M. Giersig, D. G. Kurth, H. Möhwald, Nano Lett. 2005, 5, 949.
- 24Y. Xu, S. Jin, H. Xu, A. Nagai, D. Jiang, Chem. Soc. Rev. 2013, 42, 8012.
- 25Y. Zhang, S. N. Riduan, Chem. Soc. Rev. 2012, 41, 2083.
- 26J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak, A. I. Cooper, Angew. Chem., Int. Ed. 2007, 46, 8574.
- 27J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, H. Niu, J. T. A. Jones, Y. Z. Khimyak, A. I. Cooper, J. Am. Chem. Soc. 2008, 130, 7710.
- 28E. Stockel, X. Wu, A. Trewin, C. D. Wood, R. Clowes, N. L. Campbell, J. T. A. Jones, Y. Z. Khimyak, D. J. Adams, A. I. Cooper, Chem. Commun. 2009, 212.
- 29D. Y. Kim, T. J. Choi, J. G. Kim, J. Y. Chang, ACS Omega 2018, 3, 8745.
- 30J. Lee, J. Y. Chang, RSC Adv. 2018, 8, 25277.
- 31J. G. Kim, M. C. Cha, J. Lee, T. Choi, J. Y. Chang, ACS Appl. Mater. Interfaces 2017, 9, 38081.
- 32J. G. Kim, T. J. Choi, J. Y. Chang, Chem. Eng. J. 2016, 306, 242.
- 33J. Lee, J. Y. Chang, Chem. Commun. 2016, 52, 10419.
- 34Y. Lim, M. C. Cha, J. Y. Chang, Sci. Rep. 2015, 5, 15957.
- 35J. Lee, J. Y. Chang, Langmuir 2018, 34, 11843.
- 36J. Lee, J. Y. Chang, Chem. Eng. J. 2020, 381, 122767.
- 37T. Serizawa, K. Hamada, M. Akashi, Nature 2004, 429, 52.
- 38E. M. M. Del Valle, Process Biochem. 2004, 39, 1033.
- 39Á. Martínez, C. O Mellet, J. M. García Fernández, Chem. Soc. Rev. 2013, 42, 4746.
- 40F. Bellia, D. La Mendola, C. Pedone, E. Rizzarelli, M. Saviano, G. Vecchio, Chem. Soc. Rev. 2009, 38, 2756.
- 41J. Wang, X. Wang, X. Zhang, J. Mater. Chem. A 2017, 5, 4308.
- 42I. Capron, B. Cathala, Biomacromolecules 2013, 14, 291.
- 43A. Barbetta, N. R. Cameron, Macromolecules 2004, 37, 3188.
- 44P. Krajnc, D. Štefanec, I. Pulko, Macromol. Rapid Commun. 2005, 26, 1289.
- 45S. Zhang, J. Chen, V. T. Perchyonok, Polymer 2009, 50, 1723.
- 46S. Fujii, M. Okada, T. Furuzono, J. Colloid Interface Sci. 2007, 315, 287.
- 47J. Wu, G.-H. Ma, Small 2016, 12, 4633.
- 48B. Madivala, J. Fransaer, J. Vermant, Langmuir 2009, 25, 2718.
- 49A. Roy, P. P. Maity, A. Bose, S. Dhara, S. Pal, Mater. Chem. Front. 2019, 3, 385.
- 50S. K. Dey, N. de Sousa Amadeu, C. Janiak, Chem. Commun. 2016, 52, 7834.
- 51R. Du, N. Zhang, H. Xu, N. Mao, W. Duan, J. Wang, Q. Zhao, Z. Liu, J. Zhang, Adv. Mater. 2014, 26, 8053.
- 52S. Chakraborty, Y. J. Colon, R. Q. Snurr, S. T. Nguyen, Chem. Sci. 2015, 6, 384.
- 53Z. J. Wang, S. Ghasimi, K. Landfester, K. A. I. Zhang, Chem. Mater. 2015, 27, 1921.
- 54O. G. Kravchenko, G. Gedler, S. G. Kravchenko, D. L. Feke, I. Manas-Zloczower, Soft Matter 2018, 14, 1637.
- 55L. Chen, R. Du, J. Zhang, T. Yi, J. Mater. Chem. A 2015, 3, 20547.
- 56A. Alsbaiee, B. J. Smith, L. Xiao, Y. Ling, D. E. Helbling, W. R. Dichtel, Nature 2016, 529, 190.
- 57Y. Liang, B. Wu, D. Wu, F. Xu, Z. Li, J. Luo, H. Zhong, R. Fu, K. Matyjaszewski, J. Mater. Chem. 2011, 21, 14424.
- 58S. A. Saba, M. P. S. Mousavi, P. Bühlmann, M. A. Hillmyer, J. Am. Chem. Soc. 2015, 137, 8896.
- 59M. Seo, S. Kim, J. Oh, S.-J. Kim, M. A. Hillmyer, J. Am. Chem. Soc. 2015, 137, 600.
- 60Z. Zhang, F. Xiao, Y. Guo, S. Wang, Y. Liu, ACS Appl. Mater. Interfaces 2013, 5, 2227.
- 61C. Xu, G. P. Rangaiah, X. S. Zhao, Ind. Eng. Chem. Res. 2014, 53, 14641.
- 62X. Yan, T. Ohno, K. Nishijima, R. Abe, B. Ohtani, Chem. Phys. Lett. 2006, 429, 606.
- 63K. Bourikas, C. Kordulis, A. Lycourghiotis, Chem. Rev. 2014, 114, 9754.
- 64K. M. Lee, Y. Oh, H. Yoon, M. Chang, H. Kim, ACS Appl. Mater. Interfaces 2020, 12, 8642.
- 65K. M. Lee, H. J. Kim, C.-S. Kang, T. Tojo, J. A. Chae, Y. Oh, M. C. Cha, K. S. Yang, Y. A. Kim, H. Kim, Polym. Chem. 2019, 10, 852.
- 66D. Jung, K. M. Lee, T. Tojo, Y. Oh, H. Yoon, H. Kim, Chem. Mater. 2019, 31, 6249.
- 67D. Jung, K. M. Lee, J. Y. Chang, M. Yun, H.-J. Choi, Y. A. Kim, H. Yoon, H. Kim, ACS Appl. Mater. Interfaces 2018, 10, 42985.