Elucidation of Active Sites on S, N Codoped Carbon Cubes Embedding Co–Fe Carbides toward Reversible Oxygen Conversion in High-Performance Zinc–Air Batteries
Yuebin Lian
Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006 P. R. China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorKefei Shi
Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006 P. R. China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorHaojing Yang
Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006 P. R. China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorHao Sun
Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006 P. R. China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorPengwei Qi
Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006 P. R. China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorJing Ye
Analysis and Testing Center, Soochow University, Suzhou, 215123 China
Search for more papers by this authorWenbin Wu
KeTai Advanced Materials Co., Ltd, Yichun, Jiangxi, 330800 China
Search for more papers by this authorZhao Deng
Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006 P. R. China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorCorresponding Author
Yang Peng
Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006 P. R. China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
E-mail: [email protected]
Search for more papers by this authorYuebin Lian
Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006 P. R. China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorKefei Shi
Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006 P. R. China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorHaojing Yang
Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006 P. R. China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorHao Sun
Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006 P. R. China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorPengwei Qi
Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006 P. R. China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorJing Ye
Analysis and Testing Center, Soochow University, Suzhou, 215123 China
Search for more papers by this authorWenbin Wu
KeTai Advanced Materials Co., Ltd, Yichun, Jiangxi, 330800 China
Search for more papers by this authorZhao Deng
Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006 P. R. China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
Search for more papers by this authorCorresponding Author
Yang Peng
Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006 P. R. China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
The development of high-performance but low-cost catalysts for the electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is of central importance for realizing the prevailing application of metal–air batteries. Herein a facile route is devised to synthesize S, N codoped carbon cubes embedding Co–Fe carbides by pyrolyzing the Co–Fe Prussian blue analogues (PBA) coated with methionine. Via the strong metal–sulfur interaction, the methionine coating provides a robust sheath to restrain the cubic morphology of PBA upon pyrolysis, which is proved highly beneficial for promoting the specific surface area and active sites exposure, leading to remarkable bifunctionality of ORR and OER comparable to the benchmarks of Pt/C and RuO2. Further elaborative investigations on the activity origin and postelectrolytic composition unravel that for ORR the high activity is mainly contributed by the S, N codoped carbon shell with the inactive carbide phase converting into carbonate hydroxides. For OER, the embedded Co–Fe carbides transform in situ into layered (hydr)oxides, serving as the actual active sites for promoting water oxidation. Zn–air batteries employing the developed hollow structure as the air cathode catalyst demonstrate superb rechargeability, energy efficiency, as well as portability.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201907368-sup-0001-SuppMat.pdf1.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) M. S. Dresselhaus, I. L. Thomas, Nature 2001, 414, 332; b) M. K. Debe, Nature 2012, 486, 43; c) Y. Li, H. Dai, Chem. Soc. Rev. 2014, 43, 5257; d) T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, D. G. Nocera, Chem. Rev. 2010, 110, 6474; e) Y. Guo, J. Tang, H. Qian, Z. Wang, Y. Yamauchi, Chem. Mater. 2017, 29, 5566; f) Y. Guo, J. Tang, Z. Wang, Y.-M. Kang, Y. Bando, Y. Yamauchi, Nano Energy 2018, 47, 494.
- 2a) B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou, X. Wang, Nat. Energy 2016, 1, 15006; b) Y. Zhao, J. Wan, H. Yao, L. Zhang, K. Lin, L. Wang, N. Yang, D. Liu, L. Song, J. Zhu, L. Gu, L. Liu, H. Zhao, Y. Li, D. Wang, Nat. Chem. 2018, 10, 924; c) G. Wu, P. Zelenay, Acc. Chem. Res. 2013, 46, 1878; d) L. Liu, A. Corma, Chem. Rev. 2018, 118, 4981.
- 3a) Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060; b) W. He, Y. Wang, C. Jiang, L. Lu, Chem. Soc. Rev. 2016, 45, 2396; c) X. M. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F. W. T. Goh, T. S. A. Hor, Y. Zong, Z. L. Liu, ACS Catal. 2015, 5, 4643; d) A. Zitolo, V. Goellner, V. Armel, M. T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Nat. Mater. 2015, 14, 937.
- 4a) A. A. Gewirth, J. A. Varnell, A. M. DiAscro, Chem. Rev. 2018, 118, 2313; b) L. Wang, A. Holewinski, C. Wang, ACS Catal. 2018, 8, 9388; c) W. Wang, Q. Y. Jia, S. Mukerjee, S. L. Chen, ACS Catal. 2019, 9, 10126; d) Y. Gu, G. Yan, Y. Lian, P. Qi, Q. Mu, C. Zhang, Z. Deng, Y. Peng, Energy Storage Mater. 2019, 23, 252.
- 5a) C. Yang, Y. Yao, Y. Lian, Y. Chen, R. Shah, X. Zhao, M. Chen, Y. Peng, Z. Deng, Small 2019, 15, 1900015; b) L. Han, X. Y. Yu, X. W. Lou, Adv. Mater. 2016, 28, 4601; c) T. Zhou, W. Xu, N. Zhang, Z. Du, C. Zhong, W. Yan, H. Ju, W. Chu, H. Jiang, C. Wu, Y. Xie, Adv. Mater. 2019, 31, 1807468; d) J. Yin, Y. Li, F. Lv, Q. Fan, Y. Q. Zhao, Q. Zhang, W. Wang, F. Cheng, P. Xi, S. Guo, ACS Nano 2017, 11, 2275; e) R. S. Datta, F. Haque, M. Mohiuddin, B. J. Carey, N. Syed, A. Zavabeti, B. Zhang, H. Khan, K. J. Berean, J. Z. Ou, N. Mahmood, T. Daeneke, K. Kalantar-zadeh, J. Mater. Chem. A 2017, 5, 24223; f) F. Haque, A. Zavabeti, B. Y. Zhang, R. S. Datta, Y. Yin, Z. Yi, Y. Wang, N. Mahmood, N. Pillai, N. Syed, H. Khan, A. Jannat, N. Wang, N. Medhekar, K. Kalantar-zadeh, J. Z. Ou, J. Mater. Chem. A 2019, 7, 257.
- 6a) Y. Lian, H. Sun, X. Wang, P. Qi, Q. Mu, Y. Chen, J. Ye, X. Zhao, Z. Deng, Y. Peng, Chem. Sci. 2019, 10, 464; b) P. He, X. Y. Yu, X. W. Lou, Angew. Chem., Int. Ed. 2017, 56, 3897; c) B. Y. Guan, L. Yu, X. W. Lou, Angew. Chem., Int. Ed. 2017, 56, 2386.
- 7a) X. Y. Yu, L. Yu, H. B. Wu, X. W. Lou, Angew. Chem., Int. Ed. 2015, 54, 5331; b) P. Zhang, B. Y. Guan, L. Yu, X. W. D. Lou, Angew. Chem., Int. Ed. 2017, 56, 7141.
- 8a) X. Han, X. Ling, Y. Wang, T. Ma, C. Zhong, W. Hu, Y. Deng, Angew. Chem., Int. Ed. 2019, 58, 5359; b) Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang, Y. Li, Angew. Chem., Int. Ed. 2017, 56, 6937; c) C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Angew. Chem., Int. Ed. 2017, 56, 13944; d) Y. Lian, W. Yang, C. Zhang, H. Sun, Z. Deng, W. Xu, L. Song, Z. Ouyang, Z. Wang, J. Guo, Y. Peng, Angew. Chem., Int. Ed. 2020, 59, 286.
- 9a) L. Yang, X. F. Zeng, W. C. Wang, D. P. Cao, Adv. Funct. Mater. 2018, 28, 1704537; b) X. D. Lou, Angew. Chem., Int. Ed. 2020, 59, 4634; c) I. S. Amiinu, X. B. Liu, Z. H. Pu, W. Q. Li, Q. D. Li, J. Zhang, H. L. Tang, H. N. Zhang, S. C. Mu, Adv. Funct. Mater. 2018, 28, 1704638; d) T. T. Wang, Z. K. Kou, S. C. Mu, J. P. Liu, D. P. He, I. S. Amiinu, W. Meng, K. Zhou, Z. X. Luo, S. Chaemchuen, F. Verpoort, Adv. Funct. Mater. 2018, 28, 1705048; e) H. Sun, Y. Lian, C. Yang, L. Xiong, P. Qi, Q. Mu, X. Zhao, J. Guo, Z. Deng, Y. Peng, Energy Environ. Sci. 2018, 11, 2363; f) Q. Q. Mu, W. Zhu, G. B. Yan, Y. B. Lian, Y. Z. Yao, Q. Li, Y. Y. Tian, P. Zhang, Z. Deng, Y. Peng, J. Mater. Chem. A 2018, 6, 21110; g) Y. V. Kaneti, S. Dutta, M. S. A. Hossain, M. J. A. Shiddiky, K.-L. Tung, F.-K. Shieh, C.-K. Tsung, K. C. W. Wu, Y. Yamauchi, Adv. Mater. 2017, 29, 1700213; h) J. Tang, R. R. Salunkhe, H. Zhang, V. Malgras, T. Ahamad, S. M. Alshehri, N. Kobayashi, S. Tominaka, Y. Ide, J. H. Kim, Y. Yamauchi, Sci. Rep. 2016, 6, 30295; i) Y. V. Kaneti, J. Zhang, Y.-B. He, Z. Wang, S. Tanaka, M. S. A. Hossain, Z.-Z. Pan, B. Xiang, Q.-H. Yang, Y. Yamauchi, J. Mater. Chem. A 2017, 5, 15356; j) A. Azhar, Y. Li, Z. Cai, M. B. Zakaria, M. K. Masud, M. S. A. Hossain, J. Kim, W. Zhang, J. Na, Y. Yamauchi, M. Hu, Bull. Chem. Soc. Jpn. 2019, 92, 875.
- 10a) Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong, W. C. Cheong, R. Shen, X. Wen, L. Zheng, A. I. Rykov, S. Cai, H. Tang, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Nat. Commun. 2018, 9, 5422; b) J.-Y. Zhao, R. Wang, S. Wang, Y.-R. Lv, H. Xu, S.-Q. Zang, J. Mater. Chem. A 2019, 7, 7389; c) R. Wang, X. Y. Dong, J. Du, J. Y. Zhao, S. Q. Zang, Adv. Mater. 2018, 30, 1703711; d) H. Zhang, T. T. Wang, A. Sumboja, W. J. Zang, J. P. Xie, D. Q. Gao, S. J. Pennycook, Z. L. Liu, C. Guan, J. Wang, Adv. Funct. Mater. 2018, 28, 1804846.
- 11a) M. X. Chen, M. Zhu, M. Zuo, S. Q. Chu, J. Zhang, Y. Wu, H. W. Liang, X. Feng, Angew. Chem., Int. Ed. 2020, 59, 1627; b) W. J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L. J. Zhang, J. Q. Wang, J. S. Hu, Z. Wei, L. J. Wan, J. Am. Chem. Soc. 2016, 138, 3570.
- 12L. Bai, C. S. Hsu, D. T. L. Alexander, H. M. Chen, X. Hu, J. Am. Chem. Soc. 2019, 141, 14190.
- 13a) L. Yu, H. Hu, H. B. Wu, X. W. Lou, Adv. Mater. 2017, 29, 39; b) H. Zhang, Y. Liu, T. Chen, J. Zhang, J. Zhang, X. W. D. Lou, Adv. Mater. 2019, 31, 1904548.
- 14a) Q. Hu, G. M. Li, G. D. Li, X. F. Liu, B. Zhu, X. Y. Chai, Q. L. Zhang, J. Liu, C. He, Adv. Energy Mater. 2019, 9, 1803867; b) X. Han, X. Ling, D. Yu, D. Xie, L. Li, S. Peng, C. Zhong, N. Zhao, Y. Deng, W. Hu, Adv. Mater. 2019, 31, 1905622.
- 15H. Hu, L. Han, M. Yu, Z. Wang, X. W. Lou, Energy Environ. Sci. 2016, 9, 107.
- 16H. Zhang, O. Noonan, X. Huang, Y. Yang, C. Xu, L. Zhou, C. Yu, ACS Nano 2016, 10, 4579.
- 17Y. Mun, S. Lee, K. Kim, S. Kim, S. Lee, J. W. Han, J. Lee, J. Am. Chem. Soc. 2019, 141, 6254.
- 18J. Liu, ACS Catal. 2017, 7, 34.
- 19C. Hu, L. Dai, Adv. Mater. 2017, 29, 1604942.
- 20a) Y. Guo, J. Tang, J. Henzie, B. Jiang, H. Qian, Z. Wang, H. Tan, Y. Bando, Y. Yamauchi, Mater. Horiz. 2017, 4, 1171; b) H. Tan, J. Tang, J. Henzie, Y. Li, X. Xu, T. Chen, Z. Wang, J. Wang, Y. Ide, Y. Bando, Y. Yamauchi, ACS Nano 2018, 12, 5674; c) H. Tan, Y. Li, J. Kim, T. Takei, Z. Wang, X. Xu, J. Wang, Y. Bando, Y. M. Kang, J. Tang, Y. Yamauchi, Adv. Sci. 2018, 5, 1800120; d) W. Xia, J. Tang, J. Li, S. Zhang, K. C. Wu, J. He, Y. Yamauchi, Angew. Chem., Int. Ed. 2019, 58, 13354.