Laser-Assisted Strain Engineering of Thin Elastomer Films to Form Variable Wavy Substrates for Cell Culture
Corresponding Author
Caterina Tomba
Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland
E-mail: [email protected], [email protected]Search for more papers by this authorTatiana Petithory
Université de Haute-Alsace, CNRS, IS2M UMR 7361, 15, Rue Jean Starcky, F-68100 Mulhouse, France
Search for more papers by this authorRiccardo Pedron
Université de Haute-Alsace, CNRS, IS2M UMR 7361, 15, Rue Jean Starcky, F-68100 Mulhouse, France
Faculty of Pharmacy, University of Strasbourg, CNRS UMR 7199Laboratoire de conception et application de molécules bioactives (CAMB), équipe de Pharmacie Biogalénique, 74 Route du Rhin, 67401 Ilkirch Cedex, France
Search for more papers by this authorAissam Airoudj
Université de Haute-Alsace, CNRS, IS2M UMR 7361, 15, Rue Jean Starcky, F-68100 Mulhouse, France
Search for more papers by this authorIlaria Di Meglio
Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland
Search for more papers by this authorAurélien Roux
Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland
National Center of Competence in Research Chemical Biology, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland
Search for more papers by this authorCorresponding Author
Valeriy Luchnikov
Université de Haute-Alsace, CNRS, IS2M UMR 7361, 15, Rue Jean Starcky, F-68100 Mulhouse, France
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Caterina Tomba
Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland
E-mail: [email protected], [email protected]Search for more papers by this authorTatiana Petithory
Université de Haute-Alsace, CNRS, IS2M UMR 7361, 15, Rue Jean Starcky, F-68100 Mulhouse, France
Search for more papers by this authorRiccardo Pedron
Université de Haute-Alsace, CNRS, IS2M UMR 7361, 15, Rue Jean Starcky, F-68100 Mulhouse, France
Faculty of Pharmacy, University of Strasbourg, CNRS UMR 7199Laboratoire de conception et application de molécules bioactives (CAMB), équipe de Pharmacie Biogalénique, 74 Route du Rhin, 67401 Ilkirch Cedex, France
Search for more papers by this authorAissam Airoudj
Université de Haute-Alsace, CNRS, IS2M UMR 7361, 15, Rue Jean Starcky, F-68100 Mulhouse, France
Search for more papers by this authorIlaria Di Meglio
Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland
Search for more papers by this authorAurélien Roux
Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland
National Center of Competence in Research Chemical Biology, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland
Search for more papers by this authorCorresponding Author
Valeriy Luchnikov
Université de Haute-Alsace, CNRS, IS2M UMR 7361, 15, Rue Jean Starcky, F-68100 Mulhouse, France
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
Endothelial and epithelial cells usually grow on a curved environment, at the surface of organs, which many techniques have tried to reproduce. Here a simple method is proposed to control curvature of the substrate. Prestrained thin elastomer films are treated by infrared laser irradiation in order to rigidify the surface of the film. Wrinkled morphologies are produced upon stress relaxation for irradiation doses above a critical value. Wrinkle wavelength and depth are controlled by the prestrain, the laser power, and the speed at which the laser scans the film surface. Stretching of elastomer substrates with a “sand clock”-width profile enables the generation of a stress gradient, which results in patterns of wrinkles with a depth gradient. Thus, different combinations of topography changes on the same substrate can be generated. The wavelength and the depth of the wrinkles, which have the characteristic values within a range of several tens of µm, can be dynamically regulated by the substrate reversible stretching. It is shown that these anisotropic features are efficient substrates to control polarization of cell shapes and orientation of their migration. With this approach a flexible tool is provided for a wide range of applications in cell biophysics studies.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201900162-sup-0001-S1.pdf1.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. M. Ross, Z. Jiang, M. Bastmeyer, J. Lahann, Small 2012, 8, 336.
- 2M. Ermis, E. Antmen, V. Hasirci, Bioact. Mater. 2018, 3, 355.
- 3G. Halder, S. Dupont, S. Piccolo, Nat. Rev. Mol. Cell Biol. 2012, 13, 591.
- 4M. Versaevel, T. Grevesse, S. Gabriele, Nat. Commun. 2012, 3, 671.
- 5L. Pieuchot, J. Marteau, A. Guignandon, T. Dos Santos, I. Brigaud, P. F. Chauvy, T. Cloatre, A. Ponche, T. Petithory, P. Rougerie, M. Vassaux, J. L. Milan, N. Tusamda Wakhloo, A. Spangenberg, M. Bigerelle, K. Anselme, Nat. Commun. 2018, 9, 3995.
- 6J. Swift, I. L. Ivanovska, A. Buxboim, T. Harada, P. D. P. Dingal, J. Pinter, J. D. Pajerowski, K. R. Spinler, J. W. Shin, M. Tewari, F. Rehfeldt, Science 2013, 341, 1240104.
- 7C. Guilluy, L. D. Osborne, L. Van Landeghem, L. Sharek, R. Superfine, R. Garcia-Mata, K. Burridge, Nat. Cell Biol. 2014, 16, 376.
- 8C. Schwartz, M. Fischer, K. Mamchaoui, A. Bigot, T. Lok, C. Verdier, A. Duperray, R. Michel, I. Holt, T. Voit, S. Quijano-Roy, G. Bonne, C. Coirault, Sci. Rep. 2017, 7, 1.
- 9V. Yakovlevich Prinz, V. Alexandrovich Seleznev, A. Victorovich Prinz, A. Vladimirovich Kopylov, Sci. Technol. Adv. Mater. 2009, 10, 034502.
- 10V. Luchnikov, O. Sydorenko, M. Stamm, Adv. Mater. 2005, 17, 1177.
- 11V. Luchnikov, L. Lonov, M. Stamm, Macromol. Rapid Commun. 2011, 32, 1943.
- 12Y. Ma, K. I. Jang, L. Wang, H. N. Jung, J. W. Kwak, Y. Xue, H. Chen, Y. Yang, D. Shi, X. Feng, J. A. Rogers, Y. Huang, Adv. Funct. Mater. 2016, 26, 5345.
- 13W. T. S. Huck, N. Bowden, P. Onck, T. Pardoen, J. W. Hutchinson, G. M. Whitesides, Langmuir 2000, 16, 3497.
- 14X. Jiang, S. Takayama, X. Qian, E. Ostuni, H. Wu, N. Bowden, P. LeDuc, D. E. Ingber, G. M. Whitesides, Langmuir 2002, 18, 3273.
- 15A. Chen, D. K. Lieu, L. Freschauf, V. Lew, H. Sharma, J. Wang, D. Nguyen, I. Karakikes, R. J. Hajjar, A. Gopinathan, E. Botvinick, C. C. Fowlkes, R. A. Li, M. Khine, Adv. Mater. 2011, 23, 5785.
- 16Q. Zhou, O. C. Ocampo, C. F. Guimarães, P. T. Kühn, T. G. van Kooten, P. van Rijn, ACS Appl. Mater. Interfaces 2017, 9, 31433.
- 17H. Izawa, N. Okuda, T. Yonemura, K. Kuroda, K. Ochi, S. Ifuku, M. Morimoto, H. Saimoto, M. Noda, K. Azuma, Y. Okamoto, Colloids Interfaces 2018, 2, 15.
- 18D. S. Kim, H. W. Lee, J. H. Lee, H. G. Kwon, S. W. Lee, S. J. Han, O. C. Jeong, Colloids Surf., B 2018, 170, 266.
- 19A. K. Epstein, D. Hong, P. Kim, A. Joanna, New J. Phys. 2013, 15, 095018.
- 20J. I. Luna, J. Ciriza, M. E. Garcia-Ojeda, M. Kong, A. Herren, D. K. Lieu, R. A. Li, C. C. Fowlkes, M. Khine, K. E. McCloskey, Tissue Eng., Part C 2011, 17, 579.
- 21C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H.-C. Kim, W. Volksen, R. D. Miller, E. E. Simonyi, Nat. Mater. 2004, 3, 545.
- 22E. A. Wilder, S. Guo, S. Lin-Gibson, M. J. Fasolka, C. M. Stafford, Macromolecules 2006, 39, 4138.
- 23E. P. Chan, E. J. Smith, R. C. Hayward, A. J. Crosby, Adv. Mater. 2008, 20, 711.
- 24C. Harrison, C. M. Stafford, W. Zhang, A. Karim, Appl. Phys. Lett. 2004, 85, 4016.
- 25H. Guo, J. Tang, K. Qian, D. Tsoukalas, M. Zhao, J. Yang, B. Zhang, X. Chou, J. Liu, C. Xue, W. Zhang, Sci. Rep. 2016, 6, 1.
- 26Y. Wang, C. Zhu, R. Pfattner, H. Yan, L. Jin, S. Chen, F. Molina-Lopez, F. Lissel, J. Liu, N. I. Rabiah, Z. Chen, J. W. Chung, C. Linder, M. F. Toney, B. Murmann, Z. Bao, Sci. Adv. 2017, 3, e1602076.
- 27J. Tang, H. Guo, M. Zhao, J. Yang, D. Tsoukalas, B. Zhang, J. Liu, C. Xue, W. Zhang, Sci. Rep. 2015, 5, 1.
- 28D. Maji, D. Das, J. Wala, S. Das, Sci. Rep. 2015, 5, 1.
- 29M. Werner, N. A. Kurniawan, G. Korus, C. V. C. Bouten, A. Petersen, J. R. Soc., Interface 2018, 15, 20180162.
- 30K. E. Broaders, A. E. Cerchiari, Z. J. Gartner, Integr. Biol. 2015, 7, 1611.
10.1039/C5IB00240K Google Scholar
- 31K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, J. Genzer, Nat. Mater. 2005, 4, 293.
- 32W. Pabst, E. Gregorová, Ceram.-Silik. 2013, 57, 167.
- 33J. Y. Chung, A. J. Nolte, C. M. Stafford, Adv. Mater. 2011, 23, 349.
- 34Y. Ma, Y. Xue, K.-I. Jang, X. Feng, J. A. Rogers, H. Yonggang, Proc. R. Soc. A 2016, 472, 20160339.
10.1098/rspa.2016.0339 Google Scholar
- 35Z. Y. Huang, W. Hong, Z. Suo, J. Mech. Phys. Solids 2005, 53, 2101.
- 36F. Brau, P. Damman, H. Diamant, T. A. Witten, Soft Matter 2013, 9, 8177.
- 37L. D. Landau, E. M. Lifshitz, Theory of Elasticity, 3rd ed., Pergamon, New York 1986.
- 38H. Fei, H. Jiang, D.-Y. Khang, J. Vac. Sci. Technol., A 2009, 27, L9.
- 39N. E. Stankova, P. A. Atanasov, R. G. Nikov, R. G. Nikov, N. N. Nedyalkov, T. R. Stoyanchov, N. Fukata, K. N. Kolev, E. I. Valova, J. S. Georgieva, S. A. Armyanov, Appl. Surf. Sci. 2016, 374, 96.
- 40S. Armyanov, N. E. Stankova, P. A. Atanasov, E. Valova, K. Kolev, J. Georgieva, O. Steenhaut, K. Baert, A. Hubin, Nucl. Instr. Meth. Phys. Res. B 2015, 360, 30.
- 41P. A. Atanasov, N. E. Stankova, N. N. Nedyalkov, N. Fukata, D. Hirsch, B. Rauschenbach, S. Amoruso, X. Wang, K. N. Kolev, E. I. Valova, J. S. Georgieva, S. A. Armyanov, Appl. Surf. Sci. 2016, 374, 229.
- 42D. A. Long, Infrared and Raman Characteristic Group Frequencies. Tables and Charts, 3rd ed., Vol. 35, George Socrates John Wiley and Sons, Ltd, Chichester 2004.
- 43C. Camino, S. M. Lomakin, M. Lazzari, Polymer 2001, 42, 2395.
- 44G. Camino, S. M. Lomakin, M. Lageard, Polymer 2002, 43, 2011.
- 45S. Timoshenko, J. Opt. Soc. Am. 1925, 11, 233.
- 46M. L. Dano, M. W. Hyer, Int. J. Solids Struct. 2003, 40, 5949.
- 47S. Daynes, C. G. Diaconu, K. D. Potter, P. M. Weaver, J. Compos. Mater. 2010, 44, 1119.
- 48H. Shao, S. Wei, X. Jiang, D. P. Holmes, T. K. Ghosh, Adv. Funct. Mater. 2018, 28, 1.
- 49D. Yu, H. Wensheng, G. Zhongning, H. Zhigang, C. Ying, Proc. CIRP 2018, 68, 168.
10.1016/j.procir.2017.12.041 Google Scholar
- 50J. Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, K. W. Eliceiri, Methods 2017, 115, 80.