General Nondestructive Passivation by 4-Fluoroaniline for Perovskite Solar Cells with Improved Performance and Stability
Shenghe Zhao
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 P. R. China
Search for more papers by this authorJiangsheng Xie
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 P. R. China
School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorGuanghui Cheng
Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 P. R. China
Search for more papers by this authorYuren Xiang
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorHouyu Zhu
College of Science, China University of Petroleum, No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580 P. R. China
Search for more papers by this authorWenyue Guo
College of Science, China University of Petroleum, No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580 P. R. China
Search for more papers by this authorHan Wang
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 P. R. China
Search for more papers by this authorMinchao Qin
Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 P. R. China
Search for more papers by this authorXinhui Lu
Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 P. R. China
Search for more papers by this authorJunle Qu
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorJiannong Wang
Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 P. R. China
Search for more papers by this authorCorresponding Author
Jianbin Xu
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 P. R. China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Keyou Yan
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 P. R. China
School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou, 510006 P. R. China
E-mail: [email protected], [email protected]Search for more papers by this authorShenghe Zhao
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 P. R. China
Search for more papers by this authorJiangsheng Xie
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 P. R. China
School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorGuanghui Cheng
Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 P. R. China
Search for more papers by this authorYuren Xiang
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorHouyu Zhu
College of Science, China University of Petroleum, No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580 P. R. China
Search for more papers by this authorWenyue Guo
College of Science, China University of Petroleum, No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580 P. R. China
Search for more papers by this authorHan Wang
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 P. R. China
Search for more papers by this authorMinchao Qin
Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 P. R. China
Search for more papers by this authorXinhui Lu
Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 P. R. China
Search for more papers by this authorJunle Qu
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorJiannong Wang
Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 P. R. China
Search for more papers by this authorCorresponding Author
Jianbin Xu
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 P. R. China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Keyou Yan
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 P. R. China
School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou, 510006 P. R. China
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
Hybrid perovskite thin films are prone to producing surface vacancies during the film formation, which degrade the stability and photovoltaic performance. Passivation via post-treatment can heal these defects, but present methods are slightly destructive to the bulk of 3D perovskite due to the solvent effect, which hinders fabrication reproducibility. Herein, nondestructive surface/interface passivation using 4-fluoroaniline (FAL) is established. FAL is not only an effective antisolvent candidate for surface modification, but also a large dipole molecule (2.84 Debye) with directional field for charge separation. Density functional theory calculation reveals that the nondestructive properties are attributed to both the conjugated amine in aromatic ring and the para-fluoro-substituent. A hot vapor assisted colloidal process is employed for the post-treatment. The molecular passivation yields an ultrathin protection layer with a hydrophobic fluoro-substituent tail and thus enhances the stability and optoelectronic properties. FAL post-treated perovskite solar cell (PSC) delivers a 20.48% power conversion efficiency under ambient conditions. Micro-photoluminescence reveals that passivation activates the dark defective state at the surface and interface, delivering the impact picture of boundary on the local carriers. This work demonstrates a generic nondestructive chemical approach for improving the performance and stability of PSCs.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201803350-sup-0001-S1.pdf796.2 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1N. G. Park, M. Grätzel, T. Miyasaka, K. Zhu, K. Emery, Nat. Energy 2016, 1, 16152.
- 2J. P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. J. Jacobsson, M. Grätzel, A. Hagfeldt, Energy Environ. Sci. 2017, 10, 710.
- 3W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok, Science 2017, 356, 1376.
- 4a) Q. Chen, H. P. Zhou, Z. R. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. S. Liu, G. Li, Y. Yang, J. Am. Chem. Soc. 2014, 136, 622; b) A. Polman, M. Knight, E. C. Garnett, B. Ehrler, W. C. Sinke, Science 2016, 352, aad4424.
- 5a) W. Y. Nie, H. H. Tsai, R. Asadpour, J. C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, A. D. Mohite, Science 2015, 347, 522; b) Y. Z. Wu, X. D. Yang, W. Chen, Y. F. Yue, M. L. Cai, F. X. Xie, E. B. Bi, A. Islam, L. Y. Han, Nat. Energy 2016, 1, 16148; c) W. Chen, Y. Z. Wu, Y. F. Yue, J. Liu, W. J. Zhang, X. D. Yang, H. Chen, E. B. Bi, I. Ashraful, M. Grätzel, L. Y. Han, Science 2015, 350, 944; d) X. Li, D. Q. Bi, C. Y. Yi, J. D. Decoppet, J. S. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel, Science 2016, 353, 58; e) A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, Science 2014, 345, 295; f) M. He, B. Li, X. Cui, B. B. Jiang, Y. J. He, Y. H. Chen, D. O'Neil, P. Szymanski, M. A. El-Sayed, J. S. Huang, Z. Q. Lin, Nat. Commun. 2017, 8, 16045; g) Y. H. Deng, E. Peng, Y. C. Shao, Z. G. Xiao, Q. F. Dong, J. S. Huang, Energy Environ. Sci. 2015, 8, 1544; h) Y. Hou, X. Du, S. Scheiner, D. P. McMeekin, Z. Wang, N. Li, M. S. Killian, H. Chen, M. Richter, I. Levchuk, N. Schrenker, E. Spiecker, T. Stubhan, N. A. Luechinger, A. Hirsch, P. Schmuki, H.-P. Steinrück, R. H. Fink, M. Halik, H. J. Snaith, C. J. Brabec, Science 2017, 358, 1192; i) M. Long, T. Zhang, W. Xu, X. Zeng, F. Xie, Q. Li, Z. Chen, F. Zhou, K. S. Wong, K. Yan, J. Xu, Adv. Energy Mater. 2017, 7, 1601882; j) K. Y. Yan, Z. H. Wei, T. K. Zhang, X. L. Zheng, M. Z. Long, Z. F. Chen, W. G. Xie, T. Zhang, Y. D. Zhao, J. B. Xu, Y. Chai, S. H. Yang, Adv. Funct. Mater. 2016, 26, 8545; k) M. Z. Long, Z. F. Chen, T. K. Zhang, Y. B. Xiao, X. L. Zeng, J. Chen, K. Y. Yan, J. B. Xu, Nanoscale 2016, 8, 6290; l) K. Y. Yan, M. Z. Long, T. K. Zhang, Z. H. Wei, H. N. Chen, S. H. Yang, J. B. Xu, J. Am. Chem. Soc. 2015, 137, 4460.
- 6a) Y. Hu, S. Si, A. Y. Mei, Y. G. Rong, H. W. Liu, X. Li, H. W. Han, Sol. RRL 2017, 1, 1600019; b) H. Zhang, J. Q. Cheng, F. Lin, H. X. He, J. Mao, K. S. Wong, A. K. Y. Jen, W. C. H. Choy, ACS Nano 2016, 10, 1503; c) X. Hu, Z. Huang, X. Zhou, P. Li, Y. Wang, Z. Huang, M. Su, W. Ren, F. Li, M. Li, Y. Chen, Y. Song, Adv. Mater. 2017, 29, 1703236.
- 7a) M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics 2014, 8, 506; b) J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W. Tress, A. Hagfeldt, Science 2017, 358, 739; c) K. Domanski, E. A. Alharbi, A. Hagfeldt, M. Grätzel, W. Tress, Nat. Energy 2018, 3, 61.
- 8a) H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, S. Tretiak, L. Pedesseau, J. Even, M. A. Alam, G. Gupta, J. Lou, P. M. Ajayan, M. J. Bedzyk, M. G. Kanatzidis, A. D. Mohite, Nature 2016, 536, 312; b) D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 7843; c) I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, H. I. Karunadasa, Angew. Chem., Int. Ed. 2014, 53, 11232.
- 9a) Y. Zhou, F. Wang, Y. Cao, J.-P. Wang, H.-H. Fang, M. A. Loi, N. Zhao, C.-P. Wong, Adv. Energy Mater. 2017, 7, 1701048; b) F. Wang, W. Geng, Y. Zhou, H.-H. Fang, C.-J. Tong, M. A. Loi, L.-M. Liu, N. Zhao, Adv. Mater. 2016, 28, 9986; c) S. Yang, Y. Wang, P. R. Liu, Y. B. Cheng, H. J. Zhao, H. G. Yang, Nat. Energy 2016, 1, 15016; d) X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, J. Huang, Nat. Energy 2017, 2, 17102; e) G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, M. K. Nazeeruddin, Nat. Commun. 2017, 8, 15684.
- 10a) X. Li, M. I. Dar, C. Y. Yi, J. S. Luo, M. Tschumi, S. M. Zakeeruddin, M. K. Nazeeruddin, H. W. Han, M. Grätzel, Nat. Chem. 2015, 7, 703; b) F. Bella, G. Griffini, J. P. Correa-Baena, G. Saracco, M. Grätzel, A. Hagfeldt, S. Turri, C. Gerbaldi, Science 2016, 354, 203; c) Y. Lin, L. Shen, J. Dai, Y. Deng, Y. Wu, Y. Bai, X. Zheng, J. Wang, Y. Fang, H. Wei, W. Ma, X. C. Zeng, X. Zhan, J. Huang, Adv. Mater. 2017, 29, 1604545; d) Y. Bai, Q. F. Dong, Y. C. Shao, Y. H. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, J. S. Huang, Nat. Commun. 2016, 7, 12806; e) Y. H. Shao, Z. G. Xiao, C. Bi, Y. B. Yuan, J. S. Huang, Nat. Commun. 2014, 5, 5784.
- 11a) J.-C. Blancon, H. Tsai, W. Nie, C. C. Stoumpos, L. Pedesseau, C. Katan, M. Kepenekian, C. M. M. Soe, K. Appavoo, M. Y. Sfeir, S. Tretiak, P. M. Ajayan, M. G. Kanatzidis, J. Even, J. J. Crochet, A. D. Mohite, Science 2017, 355, 1288; b) Z. Wang, Q. Lin, F. P. Chmiel, N. Sakai, L. M. Herz, H. J. Snaith, Nat. Energy 2017, 2, 17135.
- 12a) M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395; b) M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, L. Spiccia, Angew. Chem. 2014, 126, 10056; c) M. Long, T. Zhang, Y. Chai, C.-F. Ng, T. C. W. Mak, J. Xu, K. Yan, Nat. Commun. 2016, 7, 13503; d) D. W. deQuilettes, S. M. Vorpahl, S. D. Stranks, H. Nagaoka, G. E. Eperon, M. E. Ziffer, H. J. Snaith, D. S. Ginger, Science 2015, 348, 683; e) L. Li, Y. Chen, Z. Liu, Q. Chen, X. Wang, H. Zhou, Adv. Mater. 2016, 28, 9862; f) Y. Chang, L. Wang, J. L. Zhang, Z. M. Zhou, C. W. Li, B. B. Chen, L. Etgar, G. L. Cui, S. P. Pang, J. Mater. Chem. A 2017, 5, 4803; g) Z. M. Zhou, Z. W. Wang, Y. Y. Zhou, S. P. Pang, D. Wang, H. X. Xu, Z. H. Liu, N. P. Padture, G. L. Cui, Angew. Chem., Int. Ed. 2015, 54, 9705.
- 13a) T. Q. Niu, J. Lu, R. Munir, J. B. Li, D. Barrit, X. Zhang, H. L. Hu, Z. Yang, A. Amassian, K. Zhao, S. Z. Liu, Adv. Mater. 2018, 30, 1706576; b) J. X. Jiang, Q. Wang, Z. W. Jin, X. S. Zhang, J. Lei, H. J. Bin, Z. G. Zhang, Y. F. Li, S. Z. Liu, Adv. Energy Mater. 2018, 8, 1701757.
- 14K. Liu, S. X. Dai, F. Q. Meng, J. J. Shi, Y. S. Li, J. H. Wu, Q. B. Meng, X. W. Zhan, J. Mater. Chem. A 2017, 5, 21414.
- 15a) M. Z. Long, T. K. Zhang, H. Y. Zhu, G. X. Li, F. Wang, W. Y. Guo, Y. Chai, W. Chen, Q. Li, K. S. Wong, J. B. Xu, K. Y. Yan, Nano Energy 2017, 33, 485; b) T. Y. Zhang, G. Li, F. Xu, Y. P. Wang, N. J. Guo, X. F. Qian, Y. X. Zhao, Chem. Commun. 2016, 52, 11080.
- 16a) A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin, M. Grätzel, Adv. Funct. Mater. 2014, 24, 3250; b) Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu, Y. Yang, Nano Lett. 2014, 14, 4158; c) E. J. Juarez-Perez, Z. Hawash, S. R. Raga, L. K. Ono, Y. B. Qi, Energy Environ. Sci. 2016, 9, 3406.
- 17J. A. Christians, P. A. M. Herrera, P. V. Kamat, J. Am. Chem. Soc. 2015, 137, 1530.
- 18L. Mao, H. Tsai, W. Nie, L. Ma, J. Im, C. C. Stoumpos, C. D. Malliakas, F. Hao, M. R. Wasielewski, A. D. Mohite, M. G. Kanatzidis, Chem. Mater. 2016, 28, 7781.
- 19C. W. Li, Y. Y. Zhou, L. Wang, Y. Chang, Y. X. Zong, L. Etgar, G. L. Cui, N. P. Padture, S. P. Pang, Angew. Chem., Int. Ed. 2017, 56, 7674.
- 20W. J. Ke, C. X. Xiao, C. L. Wang, B. Saparov, H. S. Duan, D. W. Zhao, Z. W. Xiao, P. Schulz, S. P. Harvey, W. Q. Liao, W. W. Meng, Y. Yu, A. J. Cimaroli, C. S. Jiang, K. Zhu, M. Al-Jassim, G. J. Fang, D. B. Mitzi, Y. F. Yan, Adv. Mater. 2016, 28, 5214.
- 21a) N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13, 897; b) P. S. Vijayanand, J. Vivekanandan, A. Mahudeswaran, R. Jayaprakasam, Macromol. Symp. 2016, 362, 65.
- 22W. J. Ke, G. J. Fang, Q. Liu, L. B. Xiong, P. L. Qin, H. Tao, J. Wang, H. W. Lei, B. R. Li, J. W. Wan, G. Yang, Y. F. Yan, J. Am. Chem. Soc. 2015, 137, 6730.
- 23D. Y. Son, S. G. Kim, J. Y. Seo, S. H. Lee, H. Shin, D. Lee, N. G. Park, J. Am. Chem. Soc. 2018, 140, 1358.
- 24J. S. Xie, X. G. Yu, X. Sun, J. B. Huang, Y. H. Zhang, M. Lei, K. Huang, D. K. Xu, Z. G. Tang, C. Cui, D. R. Yang, Nano Energy 2016, 28, 330.
- 25S. P. Pang, H. Hu, J. L. Zhang, S. L. Lv, Y. M. Yu, F. Wei, T. S. Qin, H. X. Xu, Z. H. Liu, G. L. Cui, Chem. Mater. 2014, 26, 1485.
- 26M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Energy Environ. Sci. 2016, 9, 1989.
- 27J. He, Y. Xiang, F. Zhang, J. Lian, R. Hu, P. Zeng, J. Song, J. Qu, Nano Energy 2018, 45, 471.