Millerite Core–Nitrogen-Doped Carbon Hollow Shell Structure for Electrochemical Energy Storage
Sintayehu Nibret Tiruneh
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746 Republic of Korea
Search for more papers by this authorBong Kyun Kang
Nano Materials and Components Research Center, Korea Electronics Technology Institute, Seongnam, 463-816 Republic of Korea
Search for more papers by this authorHyung Wook Choi
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746 Republic of Korea
Search for more papers by this authorSeok Bin Kwon
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746 Republic of Korea
Search for more papers by this authorMin Seob Kim
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746 Republic of Korea
Search for more papers by this authorCorresponding Author
Dae Ho Yoon
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746 Republic of Korea
E-mail: [email protected]Search for more papers by this authorSintayehu Nibret Tiruneh
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746 Republic of Korea
Search for more papers by this authorBong Kyun Kang
Nano Materials and Components Research Center, Korea Electronics Technology Institute, Seongnam, 463-816 Republic of Korea
Search for more papers by this authorHyung Wook Choi
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746 Republic of Korea
Search for more papers by this authorSeok Bin Kwon
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746 Republic of Korea
Search for more papers by this authorMin Seob Kim
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746 Republic of Korea
Search for more papers by this authorCorresponding Author
Dae Ho Yoon
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746 Republic of Korea
E-mail: [email protected]Search for more papers by this authorAbstract
Nickel sulfides have drawn much attention with the benefits of a high redox activity, high electrical conductivity, low cost, and fabrication ease; however, these metal sulfides are susceptible to mechanical degradation regarding their cycling performance. Conversely, hollow carbon shells exhibit a substantial electrochemical steadiness in energy storage applications. Here, the design and development of a novel millerite core–nitrogen-doped carbon hollow shell (NiS–NC HS) structure for electrochemical energy storage is presented. The nitrogen-doped carbon hollow shell (NC HS) protects against the degradation and the millerite-core aggregation, giving rise to an excellent rate capability and stability during the electrochemical charging–discharging processes, in addition to improving the NiS–NC HS conductivity. The NiS–NC HS/18h supercapacitor electrode displays an outstanding specific capacitance of 1170.72 F g−1 (at 0.5 A g−1) and maintains 90.71% (at 6 A g−1) of its initial capacitance after 4000 charge–discharge cycles, owing to the unique core–shell structure. An asymmetric-supercapacitor device using NiS–NC HS and activated-carbon electrodes exhibits a high power and energy density with a remarkable cycling stability, maintaining 89.2% of its initial capacitance after 5000 cycles.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201802933-sup-0001-S1.pdf1.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 IEA, World Energy Outlook 2016, 2016.
- 2Y. Wu, L. Zhang, Transp. Res., Part D: Transp. Environ. 2017, 51, 129.
- 3D. A. Senshaw, J. W. Kim, Energy Policy 2018, 116, 433.
- 4J. Yang, X. Duan, Q. Qin, W. Zheng, J. Mater. Chem. A 2013, 1, 7880.
- 5H. Pang, C. Wei, X. Li, G. Li, Y. Ma, S. Li, J. Chen, J. Zhang, Sci. Rep. 2015, 4, 3577.
- 6S. Peng, L. Li, H. Tan, R. Cai, W. Shi, C. Li, S. G. Mhaisalkar, M. Srinivasan, S. Ramakrishna, Q. Yan, Adv. Funct. Mater. 2014, 24, 2155.
- 7P. Lou, Y. Tan, P. Lu, Z. Cui, X. Guo, J. Mater. Chem. A 2016, 4, 16849.
- 8S. N. Tiruneh, B. K. Kang, S. H. Kwag, Y. Lee, M. Kim, D. H. Yoon, Chem. - Eur. J. 2018, 24, 3263.
- 9T. Li, Y. Zuo, X. Lei, N. Li, J. Liu, H. Han, J. Mater. Chem. A 2016, 4, 8029.
- 10Y. Zhang, L. Zuo, L. Zhang, J. Yan, H. Lu, W. Fan, T. Liu, Nano Res. 2016, 9, 2747.
- 11Y. Xiao, D. Su, X. Wang, L. Zhou, S. Wu, F. Li, S. Fang, Electrochim. Acta 2015, 176, 44.
- 12J. Yang, X. Duan, W. Guo, D. Li, H. Zhang, W. Zheng, Nano Energy 2014, 5, 74.
- 13T. Liu, C. Jiang, B. Cheng, W. You, J. Yu, J. Mater. Chem. A 2017, 5, 21257.
- 14C. Liu, J. Wang, J. Li, R. Luo, J. Shen, X. Sun, W. Han, L. Wang, ACS Appl. Mater. Interfaces 2015, 7, 18609.
- 15X. Liu, L. Zhou, Y. Zhao, L. Bian, X. Feng, Q. Pu, ACS Appl. Mater. Interfaces 2013, 5, 10280.
- 16D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, X. Bao, Angew. Chem., Int. Ed. 2013, 52, 371.
- 17K. Kreek, A. Sarapuu, L. Samolberg, U. Joost, V. Mikli, M. Koel, K. Tammeveski, ChemElectroChem. 2015, 2, 2079.
- 18J. Deng, P. Ren, D. Deng, X. Bao, Angew. Chem., Int. Ed. 2015, 54, 2100.
- 19M. Al-Mamun, H. Yin, P. Liu, X. Su, H. Zhang, H. Yang, D. Wang, Z. Tang, Y. Wang, H. Zhao, Nano Res. 2017, 10, 3522.
- 20J. Kim, J. H. Kim, K. Ariga, Joule 2017, 1, 739.
- 21J. Li, X. Li, Q. Zhao, Z. Jiang, M. Tadé, S. Wang, S. Liu, Sens. Actuators, B 2018, 255, 133.
- 22M. Kruk, K. M. Kohlhaas, B. Dufour, E. B. Celer, M. Jaroniec, K. Matyjaszewski, R. S. Ruoff, T. Kowalewski, Microporous Mesoporous Mater. 2007, 102, 178.
- 23H. Wang, J. R. Zhang, X. N. Zhao, S. Xu, J. J. Zhu, Mater. Lett. 2002, 55, 253.
- 24R. Lv, Q. Li, A. R. Botello-Méndez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A. L. Elías, R. Cruz-Silva, H. R. Gutiérrez, Sci. Rep. 2012, 2, 586.
- 25A. L. Elías, P. Ayala, A. Zamudio, M. Grobosch, E. Cruz-Silva, J. M. Romo-Herrera, J. Campos-Delgado, H. Terrones, T. Pichler, M. Terrones, J. Nanosc. Nanotechnol. 2010, 10, 3959.
- 26J. Zhang, C. Li, Z. Peng, Y. Liu, J. Zhang, Z. Liu, D. Li, Sci. Rep. 2017, 7, 4886.
- 27J.-S. Hong, W. Jo, K.-J. Ko, N. M. Hwang, D.-Y. Kim, Philos. Mag. 2009, 89, 2989.
- 28J. Yu, C. Lv, L. Zhao, L. Zhang, Z. Wang, Q. Liu, Adv. Mater. Interfaces 2018, 5, 1701396.
- 29S.-W. Chou, J.-Y. Lin, J. Electrochem. Soc. 2013, 160, D178.
- 30Y. Liu, J. Zhou, W. Fu, P. Zhang, X. Pan, E. Xie, Carbon 2017, 114, 187.
- 31C.-S. Dai, P.-Y. Chien, J.-Y. Lin, S.-W. Chou, W.-K. Wu, P.-H. Li, K.-Y. Wu, T.-W. Lin, ACS Appl. Mater. Interfaces 2013, 5, 12168.
- 32T. Zhu, H. B. Wu, Y. Wang, R. Xu, X. W. D. Lou, Adv. Energy Mater. 2012, 2, 1497.
- 33C. Sun, M. Ma, J. Yang, Y. Zhang, P. Chen, W. Huang, X. Dong, Sci. Rep. 2015, 4, 7054.
- 34N. Hung Vu, P. Arunkumar, W. Bin Im, Sci. Rep. 2017, 7, 45579.
- 35B. T. Zhu, Z. Wang, S. Ding, J. S. Chen, X. W. Lou, RSC Adv. 2011, 1, 397.
- 36G.-C. Li, M. Liu, M.-K. Wu, P.-F. Liu, Z. Zhou, S.-R. Zhu, R. Liu, L. Han, RSC Adv. 2016, 6, 103517.
- 37J. Shi, X. Li, G. He, L. Zhang, M. Li, J. Mater. Chem. A 2015, 3, 20619.
- 38J. Zhang, H. Feng, J. Yang, Q. Qin, H. Fan, C. Wei, W. Zheng, ACS Appl. Mater. Interfaces 2015, 7, 21735.
- 39S. H. Lim, H. I. Elim, X. Y. Gao, A. T. S. Wee, W. Ji, J. Y. Lee, J. Lin, Phys. Rev. B 2006, 73, 045402.
- 40Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, J. Lin, J. Mater. Chem. 2011, 21, 8038.
- 41J. Kim, C. Young, J. Lee, Y. U. Heo, M. S. Park, M. S. A. Hossain, Y. Yamauchi, J. H. Kim, J. Mater. Chem. A 2017, 5, 15065.
- 42J. Kim, C. Young, J. Lee, M. S. Park, M. Shahabuddin, Y. Yamauchi, J. H. Kim, Chem. Commun. 2016, 52, 13016.
- 43L. Zhongchun, Y. Xuewei, G. Aijun, T. Huang, W. Liangbiao, L. Zhengsong, Nanotechnology 2017, 28, 065406.
- 44C. Tang, Z. Tang, H. Gong, J. Electrochem. Soc. 2012, 159, A651.
- 45J. Wen, S. Li, K. Zhou, Z. Song, B. Li, Z. Chen, T. Chen, Y. Guo, G. Fang, J. Power Sources 2016, 324, 325.
- 46S. Senthilkumar, R. K. Selvan, Phys. Chem. Chem. Phys. 2014, 16, 15692.