Sub-1.5 nm Ultrathin CoP Nanosheet Aerogel: Efficient Electrocatalyst for Hydrogen Evolution Reaction at All pH Values
Hui Li
Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorXiaoliang Zhao
Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorHongli Liu
Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorShuai Chen
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan, 030001 China
Search for more papers by this authorXianfeng Yang
Analytical and Testing Centre, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorChunxiao Lv
Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorHuawei Zhang
College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590 P. R. China
Search for more papers by this authorCorresponding Author
Xilin She
Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Dongjiang Yang
Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan, Brisbane, QLD, 4111 Australia
E-mail: [email protected], [email protected]Search for more papers by this authorHui Li
Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorXiaoliang Zhao
Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorHongli Liu
Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorShuai Chen
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan, 030001 China
Search for more papers by this authorXianfeng Yang
Analytical and Testing Centre, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorChunxiao Lv
Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorHuawei Zhang
College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590 P. R. China
Search for more papers by this authorCorresponding Author
Xilin She
Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Dongjiang Yang
Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P. R. China
Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan, Brisbane, QLD, 4111 Australia
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
Transition metal phosphides (TMPs) are certified high performance electrocatalysts for the hydrogen evolution reaction (HER). The ultrathin 2D structure of TMPs can offer abundant adsorption sites to boost HER performance. Herein, an ice-templating strategy is developed to prepare CoP aerogels composed of 2D ultrathin CoP nanosheets (<1.5 nm) using sustainable alginate biomass (seaweed extract) as the precursor. The highly porous aerogel structure can not only deliver facile mass transfer, but also prevent aggregation of the nanosheets into layered structures. As expected, the obtained CoP nanosheet aerogels exhibit remarkable stability and excellent electrocatalytic HER performance at all pH values. For instance, the sample CoP-400 presents a low overpotential of 113, 154, and 161 mV versus RHE at a current density of 10 mA cm−2 in 0.5 m H2SO4, 1 m KOH, and 1 m phosphate buffer solution, respectively. In addition, CoP-400 displays low Tafel slopes at all pH values due to the interconnected highly porous structure of the aerogel, indicating that the sample can provide low-resistance channels for mass transport. Density functional theory calculations reveal that P-top and Co bridge on (011) facet of CoP are more favorable sites during the process of HER in acid and alkaline solutions, respectively.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201802824-sup-0001-S1.pdf1.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Zheng, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem., Int. Ed. 2015, 54, 52.
- 2C. G. Morales-Guio, L. A. Stern, X. L. Hu, Chem. Soc. Rev. 2014, 43, 6555.
- 3Y. Jiao, Y. Zheng, K. Davey, S. Z. Qiao, Nat. Energy 2016, 1, 16130.
- 4M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.
- 5D. Merki, H. Vrubel, L. Rovelli, S. Fierro, X. L. Hu, Chem. Sci. 2012, 3, 2515.
- 6P. Y. Ge, M. D. Scanlon, P. Peljo, X. J. Bian, H. Vubrel, A. O'Neill, J. N. Coleman, M. Cantoni, X. L. Hu, K. Kontturi, B. H. Liu, H. H. Girault, Chem. Commun. 2012, 48, 6484.
- 7Y. M. Shi, B. Zhang, Chem. Soc. Rev. 2016, 45, 1529.
- 8H. B. Gray, Nat. Chem. 2009, 1, 7.
- 9Y. Gu, S. Chen, J. Ren, Y. A. Jia, C. M. Chen, S. Komarneni, D. J. Yang, X. D. Yao, ACS Nano 2018, 12, 245.
- 10L. B. Ma, X. P. Shen, H. Zhou, G. X. Zhu, Z. Y. Ji, K. M. Chen, J. Mater. Chem. A 2015, 3, 5337.
- 11H. M. Sun, X. B. Xu, Z. H. Yan, X. Chen, F. Y. Cheng, P. S. Weiss, J. Chen, Chem. Mater. 2017, 29, 8539.
- 12X. Zhang, X. Yu, L. Zhang, F. Zhou, Y. Liang, R. Wang, Adv. Funct. Mater. 2018, 28, 1706523.
- 13Q. Liu, J. Q. Tian, W. Cui, P. Jiang, N. Y. Cheng, A. M. Asiri, X. P. Sun, Angew. Chem., Int. Ed. 2014, 53, 6710.
- 14J. Q. Tian, Q. Liu, A. M. Asiri, X. P. Sun, J. Am. Chem. Soc. 2014, 136, 7587.
- 15Z. H. Pu, Q. Liu, P. Jiang, A. M. Asiri, A. Y. Obaid, X. P. Sun, Chem. Mater. 2014, 26, 4326.
- 16D. N. Liu, T. T. Liu, L. X. Zhang, F. L. Qu, G. Du, A. M. Asiri, X. P. Sun, J. Mater. Chem. A 2017, 5, 3208.
- 17Y. Yin, J. C. Han, Y. M. Zhang, X. H. Zhang, P. Xu, Q. Yuan, L. Samad, X. J. Wang, Y. Wang, Z. H. Zhang, P. Zhang, X. Z. Cao, B. Song, S. Jin, J. Am. Chem. Soc. 2016, 138, 7965.
- 18Y. W. Liu, H. Cheng, M. J. Lyu, S. J. Fan, Q. H. Liu, W. S. Zhang, Y. D. Zhi, C. M. Wang, C. Xiao, S. Q. Wei, B. J. Ye, Y. Xie, J. Am. Chem. Soc. 2014, 136, 15670.
- 19S. Gao, Y. Lin, X. C. Jiao, Y. F. Sun, Q. Q. Luo, W. H. Zhang, D. Q. Li, J. L. Yang, Y. Xie, Nature 2016, 529, 68.
- 20J. H. Huang, J. T. Chen, T. Yao, J. F. He, S. Jiang, Z. H. Sun, Q. H. Liu, W. R. Cheng, F. C. Hu, Y. Jiang, Z. Y. Pan, S. Q. Wei, Angew. Chem., Int. Ed. 2015, 54, 8722.
- 21X. Long, G. X. Li, Z. L. Wang, H. Y. Zhu, T. Zhang, S. Xiao, W. Y. Guo, S. H. Yang, J. Am. Chem. Soc. 2015, 137, 11900.
- 22X. Zhang, Z. C. Lai, C. L. Tan, H. Zhang, Angew. Chem., Int. Ed. 2016, 55, 8816.
- 23Y. Kuang, G. Feng, P. S. Li, Y. M. Bi, Y. P. Li, X. M. Sun, Angew. Chem., Int. Ed. 2016, 55, 693.
- 24S. Deville, E. Saiz, R. K. Nalla, A. P. Tomsia, Science 2006, 311, 515.
- 25H. F. Zhang, I. Hussain, M. Brust, M. F. Butler, S. P. Rannard, A. I. Cooper, Nat. Mater. 2005, 4, 787.
- 26S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, C. Guizard, Nat. Mater. 2009, 8, 966.
- 27T. A. Davis, B. Volesky, A. Mucci, Water Res. 2003, 37, 4311.
- 28I. Braccini, S. Perez, Biomacromolecules 2001, 2, 1089.
- 29A. P. Grosvenor, S. D. Wik, R. G. Cavell, A. Mar, Inorg. Chem. 2005, 44, 8988.
- 30J. Bai, X. Li, A. J. Wang, R. Prins, Y. Wang, J. Catal. 2012, 287, 161.
- 31J. L. Wang, Q. Yang, Z. D. Zhang, S. H. Sun, Chem. - Eur. J. 2010, 16, 7916.
- 32A. W. Burns, K. A. Layman, D. H. Bale, M. E. Bussell, Appl. Catal., A 2008, 343, 68.
- 33C. X. Lv, X. F. Yang, A. Umar, Y. Z. Xia, Y. Jia, L. Shang, T. R. Zhang, D. J. Yang, J. Mater. Chem. A 2015, 3, 22708.
- 34N. Ma, Y. Jia, X. F. Yang, X. L. She, L. Z. Zhang, Z. Peng, X. D. Yao, D. J. Yang, J. Mater. Chem. A 2016, 4, 6376.
- 35H. Y. Lu, W. Fan, Y. P. Huang, T. X. Liu, Nano Res. 2018, 11, 1274.
- 36Y. Li, M. A. Malik, P. O'Brien, J. Am. Chem. Soc. 2005, 127, 16020.
- 37Y. H. Cui, M. Z. Xue, Z. W. Fu, X. L. Wang, X. J. Liu, J. Alloys Compd. 2013, 555, 283.
- 38D. H. Ha, B. H. Han, M. Risch, L. Giordano, K. P. C. Yao, P. Karayaylali, Y. Shao-Horn, Nano Energy 2016, 29, 37.
- 39J. Deng, P. J. Ren, D. H. Deng, X. H. Bao, Angew. Chem., Int. Ed. 2015, 54, 2100.
- 40X. X. Zou, X. X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmekova, T. Asefa, Angew. Chem., Int. Ed. 2014, 53, 4372.
- 41Z. P. Huang, Z. Z. Chen, Z. B. Chen, C. C. Lv, M. G. Humphrey, C. Zhang, Nano Energy 2014, 9, 373.
- 42H. Li, F. Ke, J. F. Zhu, Nanomaterials 2018, 8, 89.
- 43Y. F. Zeng, Y. Y. Wang, G. Huang, C. Chen, L. L. Huang, R. Chen, S. Y. Wang, Chem. Commun. 2018, 54, 1465.
- 44C. Zhang, Y. Huang, Y. F. Yu, J. F. Zhang, S. F. Zhuo, B. Zhang, Chem. Sci. 2017, 8, 2769.
- 45X. J. Yang, X. J. Feng, H. Q. Tan, H. Y. Zang, X. L. Wang, Y. H. Wang, E. B. Wang, Y. G. Li, J. Mater. Chem. A 2016, 4, 3947.
- 46W. F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. M. Zhu, R. R. Adzic, Angew. Chem., Int. Ed. 2012, 51, 6131.
- 47T. Y. Ma, S. Dai, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 13925.
- 48T. T. Liu, L. S. Xie, J. H. Yang, R. M. Kong, G. Du, A. M. Asiri, X. P. Sun, L. Chen, ChemElectroChem 2017, 4, 1840.
- 49G. Chang, J. Ren, X. She, K. Wang, S. Komarneni, D. Yang, Sci. Bull. 2018, 63, 155.
- 50Y. Zheng, Y. Jiao, Y. H. Zhu, L. H. Li, Y. Han, Y. Chen, A. J. Du, M. Jaroniec, S. Z. Qiao, Nat. Commun. 2014, 5, 3783.
- 51J. K. Norskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, J. K. Norskov, J. Electrochem. Soc. 2005, 152, J23.
- 52F. L. Yang, Y. T. Chen, G. Z. Cheng, S. L. Chen, W. Luo, ACS Catal. 2017, 7, 3824.
- 53D. Strmcnik, P. P. Lopes, B. Genorio, V. R. Stamenkovic, N. M. Markovic, Nano Energy 2016, 29, 29.
- 54B. Zhang, J. Liu, J. S. Wang, Y. J. Ruan, X. Ji, K. Xu, C. Chen, H. Z. Wan, L. Miao, J. J. Jiang, Nano Energy 2017, 37, 74.
- 55Z. Weng, W. Liu, L. C. Yin, R. P. Fang, M. Lo, E. I. Altman, Q. Fan, F. Li, H. M. Cheng, H. L. Wang, Nano Lett. 2015, 15, 7704.