Leveraging Titanium to Enable Silicon Anodes in Lithium-Ion Batteries
Pui-Kit Lee
School of Energy and Environment, Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong, China
Search for more papers by this authorMohammad H. Tahmasebi
Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorSijia Ran
Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorCorresponding Author
Steven T. Boles
Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Denis Y. W. Yu
School of Energy and Environment, Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong, China
E-mail: [email protected], [email protected]Search for more papers by this authorPui-Kit Lee
School of Energy and Environment, Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong, China
Search for more papers by this authorMohammad H. Tahmasebi
Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorSijia Ran
Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorCorresponding Author
Steven T. Boles
Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Denis Y. W. Yu
School of Energy and Environment, Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong, China
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
Silicon is a promising anode material for lithium-ion batteries because of its high gravimetric/volumetric capacities and low lithiation/delithiation voltages. However, it suffers from poor cycling stability due to drastic volume expansion (>300%) when it alloys with lithium, leading to structural disintegration upon lithium removal. Here, it is demonstrated that titanium atoms inside the silicon matrix can act as an atomic binding agent to hold the silicon atoms together during lithiation and mend the structure after delithiation. Direct evidence from in situ dilatometry of cosputtered silicon–titanium thin films reveals significantly smaller electrode thickness change during lithiation, compared to a pure silicon thin film. In addition, the thickness change is fully reversible with lithium extraction, and ex situ post-mortem microscopy shows that film cracking is suppressed. Furthermore, Raman spectroscopy measurements indicate that the Si–Ti interaction remains intact after cycling. Optimized Si–Ti thin films can deliver a stable capacity of 1000 mAh g−1 at a current of 2000 mA g−1 for more than 300 cycles, demonstrating the effectiveness of titanium in stabilizing the material structure. A full cell with a Si–Ti anode and LiFePO4 cathode is demonstrated, which further validates the readiness of the technology.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201802051-sup-0001-S1.pdf1,013.1 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Nano Energy 2017, 31, 113.
- 2J. K. Lee, C. Oh, N. Kim, J.-Y. Hwang, Y.-K. Sun, J. Mater. Chem. A 2016, 4, 5366.
- 3M. N. Obrovac, V. L. Chevrier, Chem. Rev. 2014, 114, 11444.
- 4X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B. W. Sheldon, J. Wu, Adv. Energy Mater. 2014, 4, 1300882.
- 5Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Adv. Energy Mater. 2017, 7, 1700715.
- 6M. S. Jung, J. H. Seo, M. W. Moon, J. W. Choi, Y. C. Joo, I. S. Choi, Adv. Energy Mater. 2015, 5, 1400611.
- 7D. Lin, Z. Lu, P.-C. Hsu, H. R. Lee, N. Liu, J. Zhao, H. Wang, C. Liu, Y. Cui, Energy Environ. Sci. 2015, 8, 2371.
- 8Y. Li, K. Yan, H.-W. Lee, Z. Lu, N. Liu, Y. Cui, Nature Energy 2016, 1, 15029.
- 9L. Zong, Y. Jin, C. Liu, B. Zhu, X. Hu, Z. Lu, J. Zhu, Nano Lett. 2016, 16, 7210.
- 10Z. Lu, N. Liu, H.-W. Lee, J. Zhao, W. Li, Y. Li, Y. Cui, ACS Nano 2015, 9, 2540.
- 11N. Liu, Z. Lu, J. Zhao, M. T. McDowell, H.-W. Lee, W. Zhao, Y. Cui, Nat. Nanotechnol. 2014, 9, 187.
- 12J. Yang, Y.-X. Wang, S.-L. Chou, R. Zhang, Y. Xu, J. Fan, W.-x. Zhang, H. Kun Liu, D. Zhao, S. Xue Dou, Nano Energy 2015, 18, 133.
- 13F. Maroni, R. Raccichini, A. Birrozzi, G. Carbonari, R. Tossici, F. Croce, R. Marassi, F. Nobili, J. Power Sources 2014, 269, 873.
- 14L. Zhao, D. J. Dvorak, M. N. Obrovac, J. Power Sources 2016, 332, 290.
- 15V. A. Sethuraman, V. Srinivasan, A. F. Bower, P. R. Guduru, J. Electrochem. Soc. 2010, 157, A1253.
- 16A. Al-Obeidi, D. Kramer, S. T. Boles, R. Mönig, C. V. Thompson, Appl. Phys. Lett. 2016, 109, 071902.
- 17P. Liu, J. Zheng, Y. Qiao, H. Li, J. Wang, M. Wu, J. Solid State Electrochem. 2014, 18, 1799.
- 18G. Schmuelling, M. Winter, T. Placke, ACS Appl. Mater. Interfaces 2015, 7, 20124.
- 19C.-M. Hwang, J.-W. Park, Surf. Coat. Technol. 2010, 205, S439.
- 20M. N. Obrovac, L. Christensen, D. B. Le, J. R. Dahn, J. Electrochem. Soc. 2007, 154, A849.
- 21B. D. Polat, O. Keles, K. Amine, Nano Lett. 2015, 15, 6702.
- 22Y. He, Y. Wang, X. Yu, H. Li, X. Huang, J. Electrochem. Soc. 2012, 159, A2076.
- 23B. D. Polat, O. Keles, Electrochim. Acta 2015, 170, 63.
- 24B. D. Polat, O. Keles, J. Alloys Compd. 2015, 622, 418.
- 25B. D. Polat, O. Keles, Thin Solid Films 2015, 589, 543.
- 26M. Oh, S. Na, C.-S. Woo, J.-H. Jeong, S.-S. Kim, A. Bachmatiuk, M. H. Rümmeli, S. Hyun, H.-J. Lee, Adv. Energy Mater. 2015, 5, 1501136.
- 27F. Maroni, G. Carbonari, F. Croce, R. Tossici, F. Nobili, ChemSusChem 2017, 10, 4771.
- 28P.-K. Lee, Y. Li, D. Y. W. Yu, J. Electrochem. Soc. 2017, 164, A6206.
- 29D. A. Long, J. Raman Spectrosc. 2004, 35, 905.
10.1002/jrs.1238 Google Scholar
- 30M. M. Adachi, M. P. Anantram, K. S. Karim, Nano Letters. 2010, 10, 4093.
- 31P. Mishra, K. P. Jain, Phys. Rev. B 2001, 64, 073304.
- 32Z. Zeng, N. Liu, Q. Zeng, S. W. Lee, W. L. Mao, Y. Cui, Nano Energy 2016, 22, 105.
- 33E. Pollak, G. Salitra, V. Baranchugov, D. Aurbach, J. Phys. Chem. C 2007, 111, 11437.
- 34B. Key, R. Bhattacharyya, M. Morcrette, V. Seznéc, J.-M. Tarascon, C. P. Grey, J. Am. Chem. Soc. 2009, 131, 9239.
- 35D. S. Jung, T. H. Hwang, S. B. Park, J. W. Choi, Nano Letters. 2013, 13, 2092.
- 36L. Yue, L. Zhang, H. Zhong, J. Power Sources 2014, 247, 327.
- 37C. Zhao, Q. Li, W. Wan, J. Li, J. Li, H. Zhou, D. Xu, J. Mater. Chem. 2012, 22, 12193.
- 38W. J. Lee, T. H. Hwang, J. O. Hwang, H. W. Kim, J. Lim, H. Y. Jeong, J. Shim, T. H. Han, J. Y. Kim, J. W. Choi, S. O. Kim, Energy Environ. Sci. 2014, 7, 621.
- 39J. Wang, X. Meng, X. Fan, W. Zhang, H. Zhang, C. Wang, ACS Nano 2015, 9, 6576.
- 40J. Ryu, D. Hong, M. Shin, S. Park, ACS Nano 2016, 10, 10589.
- 41R. Yi, F. Dai, M. L. Gordin, S. Chen, D. Wang, Adv. Energy Mater. 2013, 3, 295.
- 42Q. Xiao, Y. Fan, X. Wang, R. A. Susantyoko, Q. Zhang, Energy Environ. Sci. 2014, 7, 655.
- 43A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, Nat. Mater. 2010, 9, 353.
- 44J. Ji, H. Ji, L. L. Zhang, X. Zhao, X. Bai, X. Fan, F. Zhang, R. S. Ruoff, Adv. Mater. 2013, 25, 4673.
- 45Y. Jin, S. Li, A. Kushima, X. Zheng, Y. Sun, J. Xie, J. Sun, W. Xue, G. Zhou, J. Wu, F. Shi, R. Zhang, Z. Zhu, K. So, Y. Cui, J. Li, Energy Environ. Sci. 2017, 10, 580.
- 46S. W. Lee, M. T. McDowell, J. W. Choi, Y. Cui, Nano Lett. 2011, 11, 3034.
- 47X. H. Liu, J. W. Wang, S. Huang, F. Fan, X. Huang, Y. Liu, S. Krylyuk, J. Yoo, S. A. Dayeh, A. V. Davydov, S. X. Mao, S. T. Picraux, S. Zhang, J. Li, T. Zhu, J. Y. Huang, Nat. Nanotechnol. 2012, 7, 749.
- 48Y. Deng, A. D. Handoko, Y. Du, S. Xi, B. S. Yeo, ACS Catal. 2016, 6, 2473.
- 49R. Raccichini, A. Varzi, V. S. K. Chakravadhanula, C. Kübel, S. Passerini, Sci. Rep. 2016, 6, 23585.
- 50A. Varzi, D. Bresser, J. Von Zamory, F. Müller, S. Passerini, Adv. Energy Mater. 2014, 4, 1400054.
- 51D. Y. W. Yu, M. Zhao, H. E. Hoster, ChemElectroChem 2015, 2, 1090.