Cobalt Phosphide Double-Shelled Nanocages: Broadband Light-Harvesting Nanostructures for Efficient Photothermal Therapy and Self-Powered Photoelectrochemical Biosensing
Jingqi Tian
School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
Search for more papers by this authorHoujuan Zhu
School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
Search for more papers by this authorJie Chen
School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
Search for more papers by this authorXinting Zheng
Institute of Materials Research and Engineering, A*STAR (Agency for Science Technology and Research), 138634 Singapore
Search for more papers by this authorHongwei Duan
School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
Search for more papers by this authorKanyi Pu
School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
Search for more papers by this authorCorresponding Author
Peng Chen
School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
E-mail: [email protected]Search for more papers by this authorJingqi Tian
School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
Search for more papers by this authorHoujuan Zhu
School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
Search for more papers by this authorJie Chen
School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
Search for more papers by this authorXinting Zheng
Institute of Materials Research and Engineering, A*STAR (Agency for Science Technology and Research), 138634 Singapore
Search for more papers by this authorHongwei Duan
School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
Search for more papers by this authorKanyi Pu
School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
Search for more papers by this authorCorresponding Author
Peng Chen
School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
E-mail: [email protected]Search for more papers by this authorAbstract
Ultra-broadband light-absorbing materials are highly desired for effective solar-energy harvesting. Herein, novel cobalt phosphide double-shelled nanocages (CoP-NCs) are synthesized. Uniquely, these CoP-NCs are able to nonselectively absorb light spanning the full solar spectrum, benefiting from its electronic properties and hollow nanostructure. They promise a wide range of applications involving solar energy utilization. As proof-of-concept demonstrations, CoP-NCs are employed here as effective photothermal agents to ablate cancer cells by utilizing their ability of near-infrared heat conversion, and as photoactive material for self-powered photoelectrochemical sensing by taking advantage of their ability of photon-to-electricity conversion.
Supporting Information
Filename | Description |
---|---|
smll201700798-sup-0001-S1.pdf2.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Cui, Y. Li, L. Liu, L. Chen, J. Xu, J. Ma, G. Fang, E. Zhu, H. Wu, L. Zhao, L. Wang, Y. Huang, Nano Lett. 2015, 15, 6295.
- 2a) W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, J. C. Hummelen, Nat. Photonics 2012, 6, 560; b) Y. Zhang, Z. Sun, S. Cheng, F. Yan, ChemSusChem 2016, 9, 813.
- 3H. A. Atwater, A. Polman, Nat. Mater. 2010, 9, 205.
- 4a) L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, Nat. Photonics 2016, 10, 393; b) J. Huang, C. Liu, Y. Zhu, S. Masala, E. Alarousu, Y. Han, A. Fratalocchi, Nat. Nanotechnol. 2015, 11, 60.
- 5S. Linic, P. Christopher, D. B. Ingram, Nat. Mater. 2011, 10, 911.
- 6X. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 2011, 331, 746.
- 7a) S. V. Kershaw, A. S. Susha, A. L. Rogach, Chem. Soc. Rev. 2013, 42, 3033; b) J. M. Luther, P. K. Jain, T. Ewers, A. P. Alivisatos, Nat. Mater. 2011, 10, 361; c) A. Stavrinadis, G. Konstantatos, ChemPhysChem 2016, 17, 632; d) X. Wang, G. Sun, N. Li, P. Chen, Chem. Soc. Rev. 2016, 45, 2239.
- 8a) A. Dutta, S. K. Dutta, S. K. Mehetor, I. Mondal, U. Pal, N. Pradhan, Chem. Mater. 2016, 28, 1872; b) Z. Sun, Q. Yue, J. Li, J. Xu, H. Zheng, P. Du, J. Mater. Chem. A 2015, 3, 10243; c) S. Yi, J. Yan, B. Wulan, S. Li, K. Liu, Q. Jiang, Appl. Catal., B 2017, 200, 477; d) J. Tian, N. Cheng, Q. Liu, W. Xing, X. Sun, Angew. Chem., Int. Ed. 2015, 54, 5493.
- 9N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X. Hu, X. Kong, Q. Chen, J. Phys. Chem. C 2012, 116, 7227.
- 10a) J. Tian, Q. liu, A. M. Asiri, X. Sun, J. Am. Chem. Soc. 2014, 136, 7587; b) Y. Li, M. A. Malik, P. O'Brien, J. Am. Chem. Soc. 2005, 127, 16020.
- 11Y. Lin, H. Ji, Z. Shen, Q. Jia, D. Wang, J. Mater. Sci: Mater. Electron. 2016, 27, 2086.
- 12a) Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Science 2004, 304, 711; b) R.-K. Chiang, R.-T. Chiang, Inorg. Chem. 2007, 46, 369.
- 13A. P. Grosvenor, S. D. Wik, R. G. Cavell, A. Mar, Inorg. Chem. 2005, 44, 8988.
- 14M. P. Seah, Practical Surface Analysis: By Auger and X-Ray Photoelectron Spectroscopy (Eds: D. Briggs, M. P. Seah), Wiley, New York 1983.
- 15A. W. Burns, K. A. Layman, D. H. Bale, M. E. Bussell, Appl. Catal., A 2008, 343, 68.
- 16H. Li, P. Yang, D. Chu, H. Li, Appl. Catal., A 2007, 325, 34.
- 17H. Zheng, Phys. B 1995, 212, 125.
- 18a) N. Mironova, V. Skvortsova, U. Ulmanis, Solid State Commun. 1994, 91, 731; b) A. F. Lima, J. Phys. Chem. Solids 2014, 75, 148.
- 19T. Jiang, X. Li, M. Bujoli-Doeuff, E. Gautron, L. Cario, S. Jobic, R. Gautier, Inorg. Chem. 2016, 55, 7729.
- 20a) J.-Y. Lee, M.-C. Tsai, P.-C. Chen, T.-T. Chen, K.-L. Chan, C.-Y. Lee, R.-K. Lee, J. Phys. Chem. C 2015, 119, 25754; b) H. Zhou, T. Fan, T. Han, X. Li, J. Ding, D. Zhang, Q. Guo, H. Ogawa, Nanotechnology 2009, 20, 085603.
- 21T.-M. Liu, J. Conde, T. Lipiński, A. Bednarkiewicz, C.-C. Huang, NPG Asia Mater. 2016, 8, e295.
- 22a) C. M. Hessel, V. P. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell, B. A. Korgel, Nano Lett. 2011, 11, 2560; b) Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, J. Hu, ACS Nano 2011, 5, 9761; c) L. Cheng, S. Shen, S. Shi, Y. Yi, X. Wang, G. Song, K. Yang, G. Liu, T. E. Barnhart, W. Cai, Z. Liu, Adv. Funct. Mater. 2016, 26, 2185; d) J. Liu, X. Zheng, L. Yan, L. Zhou, G. Tian, W. Yin, L. Wang, Y. Liu, Z. Hu, Z. Gu, C. Chen, Y. Zhao, ACS Nano 2015, 9, 696; e) B. Li, Y. Zhang, R. Zou, Q. Wang, B. Zhang, L. An, F. Yin, Y. Hua, J. Hu, Dalton. Trans. 2014, 43, 6244; f) L. Cheng, J. Liu, X. Gu, H. Gong, X. Shi, T. Liu, C. Wang, X. Wang, G. Liu, H. Xing, W. Bu, B. Sun, Z. Liu, Adv. Mater. 2014, 26, 1886.
- 23a) Z.-C. Wu, W.-P. Li, C.-H. Luo, C.-H. Su, C.-S. Yeh, Adv. Funct. Mater. 2015, 25, 6527; b) P. Vijayaraghavan, C.-H. Liu, R. Vankayala, C.-S. Chiang, K. C. Hwang, Adv. Mater. 2014, 26, 6689.
- 24a) L. Martinez Maestro, P. Haro-González, A. Sánchez-Iglesias, L. M. Liz-Marzán, J. A. Garcia Sole, D. Jaque, Langmuir 2014, 30, 1650; b) C. M. Hessel, V. P. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell, B. A. Korgel, Nano Lett. 2011, 11, 2560.
- 25a) B. Gupta, N. Kumar, K. Panda, S. Dash, A. K. Tyagi, Sci. Rep. 2016, 6, 18372; b) M. Gajendiran, S. M. J. Yousuf, V. Elangovanb, S. Balasubramanian, J. Mater. Chem. B 2014, 2, 418.
- 26a) X. Zhang, L. Li, X. Peng, R. Chen, K. Huo, P. K. Chu, Electrochim. Acta 2013, 108, 491; b) H. Li, W. Hao, J. Hu, H. Wu, Biosens. Bioelectron. 2013, 47, 225; c) H. Zhang, Q. Gao, H. Li, J. Solid State Electrochem. 2016, 20, 1565; d) D. Chen, H. Zhang, X. Li, J. Li, Anal. Chem. 2010, 82, 2253; e) J. Zhang, L. Tu, S. Zhao, G. Liu, Y. Wang, Y. Wang, Z. Yue, Biosens. Bioelectron. 2015, 67, 296.
- 27S. Vogt, M. Schneider, H. Schäfer-Eberwein, G. Nöll, Anal. Chem. 2014, 86, 7530.
- 28A. Paracchino, J. C. Brauer, J.-E. Moser, E. Thimsen, M. Graetzel, J. Phys. Chem. C 2012, 116, 7341.