Coordinated Membrane Fusion of Proteinosomes by Contact-Induced Hydrogel Self-Healing
Ping Wen
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorXiaoman Liu
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorLei Wang
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorMei Li
Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS UK
Search for more papers by this authorYudong Huang
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Xin Huang
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Stephen Mann
Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS UK
E-mail: [email protected], [email protected]Search for more papers by this authorPing Wen
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorXiaoman Liu
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorLei Wang
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorMei Li
Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS UK
Search for more papers by this authorYudong Huang
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Xin Huang
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Stephen Mann
Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS UK
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
Controlled membrane fusion of proteinosome-based protocells is achieved via a hydrogel-mediated process involving dynamic covalent binding, self-healing, and membrane reconfiguration at the contact interface. The rate of proteinosome fusion is dependent on dynamic Schiff base covalent interchange, and is accelerated in the presence of encapsulated glucose oxidase and glucose, or inhibited with cinnamyl aldehyde due to enzyme-mediated decreases in pH or competitive covalent binding, respectively. The coordinated fusion of the proteinosomes leads to the concomitant transportation and redistribution of entrapped payloads such as DNA and dextran. Silica colloids with amino-functionalized surfaces undergo partial fusion with the proteinosomes via a similar dynamic hydrogel-mediated mechanism. Overall, the strategy provides opportunities for the development of interacting colloidal objects, control of collective behavior in soft matter microcompartmentalized systems, and increased complexity in synthetic protocell communities.
Supporting Information
Filename | Description |
---|---|
smll201700467-sup-0001-S1.pdf1.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) F. Menger, H. Zhang, J. Am. Chem. Soc. 2006, 128, 1414; b) M. M. Hanczyc, S. M. Fujikawa, J. W. Szostak, Science 2003, 302, 618; c) I. Budin, N. K. Devaraj, J. Am. Chem. Soc. 2011, 134, 751; d) C. D. Keating, Acc. Chem. Res. 2012, 45, 2114; e) P. Stano, P. L. Luisi, Curr. Opin. Biotechnol. 2013, 24, 633; f) N.-N. Deng, M. Yelleswarapu, L. Zheng, W. T. S. Huck, J. Am. Chem. Soc. 2017, 139, 587.
- 2a) R. Chandrawati, L. Hosta-Rigau, D. Vanderstraaten, S. A. Lokuliyana, B. Städler, F. Albericio, F. Caruso, ACS Nano 2010, 4, 1351; b) L. Hosta Rigau, O. Shimoni, B. Städler, F. Caruso, Small 2013, 9, 3573.
- 3a) M. Marguet, C. Bonduelle, S. Lecommandoux, Chem. Soc. Rev. 2013, 42, 512; b) D. A. Hammer, N. P. Kamat, FEBS Lett. 2012, 586, 2882; c) B. C. Buddingh, J. C. M. van Hest, Acc. Chem. Res. 2017, DOI: 10.1021/acs.accounts.6b00512; d) J. Gaitzsch, X. Huang, B. Voit, Chem. Rev. 2016, 116, 1053.
- 4a) R. Krishna Kumar, M. Li, S. N. Olof, A. J. Patil, S. Mann, Small 2013, 9, 357; b) M. Li, R. L. Harbron, J. V. Weaver, B. P. Binks, S. Mann, Nat. Chem. 2013, 5, 529; c) M. Li, X. Huang, S. Mann, Small 2014, 10, 3291.
- 5a) C. A. Strulson, R. C. Molden, C. D. Keating, P. C. Bevilacqua, Nat. Chem. 2012, 4, 941; b) E. Sokolova, E. Spruijt, M. M. Hansen, E. Dubuc, J. Groen, V. Chokkalingam, A. Piruska, H. A. Heus, W. T. Huck, Proc. Natl. Acad. Sci. USA 2013, 110, 11692.
- 6a) S. Koga, D. S. Williams, A. W. Perriman, S. Mann, Nat. Chem. 2011, 3, 720; b) T.-Y. D. Tang, C. R. C. Hak, A. J. Thompson, M. K. Kuimova, D. S. Williams, A. W. Perriman, S. Mann, Nat. Chem. 2014, 6, 527; c) D. S. Williams, A. J. Patil, S. Mann, Small 2014, 10, 1830.
- 7a) S. I. M. Nomura, K. Tsumoto, T. Hamada, K. Akiyoshi, Y. Nakatani, K. Yoshikawa, ChemBioChem 2003, 4, 1172; b) V. Noireaux, A. Libchaber, Proc. Natl. Acad. Sci. USA 2004, 101, 17669.
- 8a) P. Walde, S. Ichikawa, Biomol. Eng. 2001, 18, 143; b) S. F. van Dongen, M. Nallani, J. J. Cornelissen, R. J. Nolte, J. van Hest, Chem. Eur. J. 2009, 15, 1107; c) X. Huang, M. Li, S. Mann, Chem. Commun. 2014, 50, 6278.
- 9N. Martin, M. Li, S. Mann, Langmuir 2016, 32, 5881.
- 10a) L. L. Pontani, J. Van der Gucht, G. Salbreux, J. Heuvingh, J. F. Joanny, C. Sykes, Biophys. J. 2009, 96, 192; b) R. Krishna Kumar, X. Yu, A. J. Patil, M. Li, S. Mann, Angew. Chem. Int. Ed. 2011, 50, 9343; c) X. Huang, A. J. Patil, M. Li, S. Mann, J. Am. Chem. Soc. 2014, 136, 9225; d) K. Akkarachaneeyakorn, M. Li, S. A. Davis, S. Mann, Langmuir 2016, 32, 2912.
- 11a) W. Xu, P. A. Ledin, Z. Iatridi, C. Tsitsilianis, V. V. Tsukruk, Angew. Chem. Int. Ed. 2016, 55, 4908; b) X. Liu, P. Zhou, Y. Huang, M. Li, X. Huang, S. Mann, Angew. Chem. Int. Ed. 2016, 55, 7095.
- 12a) K. Kurihara, M. Tamura, K.-i. Shohda, T. Toyota, K. Suzuki, T. Sugawara, Nat. Chem. 2011, 3, 775; b) M. D. Hardy, J. Yang, J. Selimkhanov, C. M. Cole, L. S. Tsimring, N. K. Devaraj, Proc. Natl. Acad. Sci. USA 2015, 112, 8187; c) T. F. Zhu, J. W. Szostak, J. Am. Chem. Soc. 2009, 131, 5705.
- 13D. A. Wilson, R. J. Nolte, J. C. van Hest, Nat. Chem. 2012, 4, 268.
- 14Y. Yin, L. Niu, X. Zhu, M. Zhao, Z. Zhang, S. Mann, D. Liang, Nat. Commun. 2016, 7, 10658.
- 15A. Peyret, E. Ibarboure, A. Tron, L. Beauté, R. Rust, O. Sandre, N. D. McClenaghan, S. Lecommandoux, Angew. Chem. Int. Ed. 2017, 56, 1566.
- 16S. Sun, M. Li, F. Dong, S. Wang, L. Tian, S. Mann, Small 2016, 12, 1920.
- 17Y. Qiao, M. Li, R. Booth, S. Mann, Nat. Chem. 2017, 9, 110.
- 18X. Huang, M. Li, D. C. Green, D. S. Williams, A. J. Patil, S. Mann, Nat. Commun. 2013, 4, 2239.
- 19D. Su, X. Liu, L. Wang, C. Ma, H. Xie, H. Zhang, X. Meng, Y. Huang, X. Huang, Chem. Commun. 2016, 52, 13803.
- 20a) Y. Zhou, D. Yan, J. Am. Chem. Soc. 2005, 127, 10468; b) B. Gong, B.-K. Choi, J.-Y. Kim, D. Shetty, Y. H. Ko, N. Selvapalam, N. K. Lee, K. Kim, J. Am. Chem. Soc. 2015, 137, 8908; c) F. Qu, N. Liu, W. Bu, RSC Adv. 2014, 4, 9750; d) I. M. Henderson, W. F. Paxton, Angew. Chem. Int. Ed. 2014, 53, 3372; e) L. Kong, S. H. Askes, S. Bonnet, A. Kros, F. Campbell, Angew. Chem. Int. Ed. 2015, 55, 1396; f) J. Sawayama, H. Sakaino, S.-I. Kabashima, I. Yoshikawa, K. Araki, Langmuir 2011, 27, 8653.
- 21a) I. M. Henderson, A. M. Collins, H. A. Quintana, G. A. Montaño, J. A. Martinez, W. F. Paxton, Polymer 2016, 83, 239; b) T. P. Smart, C. Fernyhough, A. J. Ryan, G. Battaglia, Macromol. Rapid Commun. 2008, 29, 1855.
- 22a) Y. Gao, Q. Luo, S. Qiao, L. Wang, Z. Dong, J. Xu, J. Liu, Angew. Chem. Int. Ed. 2014, 53, 9343; b) Y. Zhang, L. Tao, S. Li, Y. Wei, Biomacromolecules 2011, 12, 2894.