Hierarchical TiO2/SnO2 Hollow Spheres Coated with Graphitized Carbon for High-Performance Electrochemical Li-Ion Storage
Huiqi Xie
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433 P. R. China
Search for more papers by this authorMin Chen
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433 P. R. China
Search for more papers by this authorCorresponding Author
Limin Wu
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433 P. R. China
E-mail: [email protected]Search for more papers by this authorHuiqi Xie
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433 P. R. China
Search for more papers by this authorMin Chen
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433 P. R. China
Search for more papers by this authorCorresponding Author
Limin Wu
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433 P. R. China
E-mail: [email protected]Search for more papers by this authorAbstract
A self-templated strategy is developed to fabricate hierarchical TiO2/SnO2 hollow spheres coated with graphitized carbon (HTSO/GC-HSs) by combined sol–gel processes with hydrothermal treatment and calcination. The as-prepared mesoporous HTSO/GC-HSs present an approximate yolk-double–shell structure, with high specific area and small nanocrystals of TiO2 and SnO2, and thus exhibit superior electrochemical reactivity and stability when used as anode materials for Li-ion batteries. A high reversible specific capacity of about 310 mAh g−1 at a high current density of 5 A g−1 can be achieved over 500 cycles indicating very good cycle stability and rate performance.
Supporting Information
Filename | Description |
---|---|
smll201604283-sup-0001-S1.pdf1.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. M. Tarascon, M. Armand, Nature 2001, 414, 359.
- 2A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. van Schalkwijk, Nat. Mater. 2005, 4, 366.
- 3Y. Sun, N. Liu, Y. Cui, Nat. Energy 2016, 1, 16071.
- 4J. B. Goodenough, Y. Kim, Chem. Mater. 2010, 22, 587.
- 5J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, J. Li, Science 2010, 330, 1515.
- 6J. Ye, H. Zhang, R. Yang, X. Li, L. Qi, Small 2010, 6, 296.
- 7Y. Huang, D. Wu, J. Wang, S. Han, L. Lv, F. Zhang, X. Feng, Small 2014, 10, 2226.
- 8B. Huang, X. Li, Y. Pei, S. Li, X. Cao, R. C. Masse, G. Cao, Small 2016, 12, 1945.
- 9J. S. Chen, X. W. Lou, Small 2013, 9, 1877.
- 10A. R. Armstrong, G. Armstrong, J. Canales, R. García, P. G. Bruce, Adv. Mater. 2005, 17, 862.
- 11Y. G. Guo, Y. S. Hu, W. Sigle, J. Maier, Adv. Mater. 2007, 19, 2087.
- 12T. Froschl, U. Hormann, P. Kubiak, G. Kucerova, M. Pfanzelt, C. K. Weiss, R. J. Behm, N. Husing, U. Kaiser, K. Landfester, M. W. Mehrens, Chem. Soc. Rev. 2012, 41, 5313.
- 13T. Xia, W. Zhang, J. B. Murowchick, G. Liu, X. Chen, Adv. Energy Mater. 2013, 3, 1516.
- 14R. D. Shannon, Acta Crystallogr. Sec. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32, 751.
- 15Z. Yi, Q. Han, P. Zan, Y. Cheng, Y. Wu, L. Wang, J. Mater. Chem. A 2016, 4, 12850.
- 16L. Zhou, H. Guo, T. Li, W. Chen, L. Liu, J. Qiao, J. Zhang, Sci. Rep. 2015, 5, 15252.
- 17J. H. Jeun, K. Y. Park, D. H. Kim, W. S. Kim, H. C. Kim, B. S. Lee, H. Kim, W. R. Yu, K. Kang, S. H. Hong, Nanoscale 2013, 5, 8480.
- 18Z. Yang, G. Du, Z. Guo, X. Yu, Z. Chen, T. Guo, R. Zeng, Nanoscale 2011, 3, 4440.
- 19C. C. Chang, Y. C. Chen, C. W. Huang, Y. H. Su, C. C. Hu, Electrochim. Acta 2013, 99, 69.
- 20Y. Tang, D. Wu, S. Chen, F. Zhang, J. Jia, X. Feng, Energy Environ. Sci. 2013, 6, 2447.
- 21S. Li, M. Ling, J. Qiu, J. Han, S. Zhang, J. Mater. Chem. A 2015, 3, 9700.
- 22S. Han, J. Jiang, Y. Huang, Y. Tang, J. Cao, D. Wu, X. Feng, Phys. Chem. Chem. Phys. 2015, 17, 1580.
- 23S. Ding, J. S. Chen, X. W. Lou, Adv. Funct. Mater. 2011, 21, 4120.
- 24Z. Yang, Q. Meng, Z. Guo, X. Yu, T. Guo, R. Zeng, J. Mater. Chem. A 2013, 1, 10395.
- 25Q. Tian, Z. Zhang, L. Yang, S.-i. Hirano, J. Power Sources 2015, 279, 528.
- 26H. Wang, H. Huang, C. Niu, A. L. Rogach, Small 2015, 11, 1364.
- 27J. S. Chen, D. Luan, C. M. Li, F. Y. Boey, S. Qiao, X. W. Lou, Chem. Commun. 2010, 46, 8252.
- 28X. W. Lou, L. A. Archer, Z. Yang, Adv. Mater. 2008, 20, 3987.
- 29J. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. Cao, X. Ai, H. Yang, Adv. Mater. 2009, 21, 3663.
- 30J. Li, H. C. Zeng, J. Am. Chem. Soc. 2007, 129, 15839.
- 31J. Y. Jung, S. Cho, Y. S. Lee, J. Alloys Compd. 2014, 614, 310.
- 32H. Xie, L. Hu, F. Wu, M. Chen, L. Wu, Adv. Sci. 2016, 3, 1600162.
- 33X. Sun, J. Liu, Y. Li, Chem. Mater. 2006, 18, 3486.
- 34L. Trotochaud, S. W. Boettcher, Chem. Mater. 2011, 23, 4920.
- 35H. Liu, W. Li, D. Shen, D. Zhao, G. Wang, J. Am. Chem. Soc. 2015, 137, 13161.
- 36J. M. Wu, J. Mater. Chem. 2011, 21, 14048.
- 37M. M. Oliveira, D. C. Schnitzler, A. J. G. Zarbin, Chem. Mater. 2003, 15, 1903.
- 38T. J. Bastow, L. Murgaski, M. E. Smith, H. J. Whitfield, Mater. Lett. 1995, 23, 117.
- 39S. Liu, K. Zhu, J. Tian, W. Zhang, S. Bai, Z. Shan, J. Alloys Compd. 2015, 639, 60.
- 40A. Shimojima, Z. Liu, T. Ohsuna, O. Terasaki, K. Kuroda, J. Am. Chem. Soc. 2005, 127, 14108.
- 41V. M. Jiménez, J. P. Espinós, A. R. González-Elipe, Surf. Sci. 1996, 366, 556.
- 42V. N. Alexander, A. Kraut-Vass, S. W. Gaarenstroom, C. J. Powell, NIST Standard Reference Database, 20, Version 4.1, http://srdata.nist.gov/xps/September, (2012).
- 43J. Zhang, Z. Xiong, X. S. Zhao, J. Mater. Chem. 2011, 21, 3634.
- 44H. Ren, R. Yu, J. Wang, Q. Jin, M. Yang, D. Mao, D. Kisailus, H. Zhao, D. Wang, Nano Lett. 2014, 14, 6679.
- 45G. Zhang, H. B. Wu, T. Song, U. Paik, X. W. Lou, Angew. Chem., Int. Ed. 2014, 53, 12590.
- 46Y. S. Hu, L. Kienle, Y. G. Guo, J. Maier, Adv. Mater. 2006, 18, 1421.
- 47X. Zhou, L. J. Wan, Y. G. Guo, Adv. Mater. 2013, 25, 2152.
- 48W. M. Zhang, J. S. Hu, Y. G. Guo, S. F. Zheng, L. S. Zhong, W. G. Song, L. J. Wan, Adv. Mater. 2008, 20, 1160.
- 49X. W. Lou, J. S. Chen, P. Chen, L. A. Archer, Chem. Mater. 2009, 21, 2868.
- 50J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 2007, 111, 14925.
- 51Y. Wang, Z. Hong, M. Wei, Y. Xia, Adv. Funct. Mater. 2012, 22, 5185.
- 52D. Deng, M. G. Kim, J. Y. Lee, J. Cho, Energy Environ. Sci. 2009, 2, 818.
- 53J. Yan, H. Song, H. Zhang, J. Yan, X. Chen, F. Wang, H. Yang, M. Gomi, Electrochim. Acta 2012, 72, 186.
- 54J. Zhao, Z. Lu, H. Wang, W. Liu, H. W. Lee, K. Yan, D. Zhuo, D. Lin, N. Liu, Y. Cui, J. Am. Chem. Soc. 2015, 137, 8372.
- 55J. Jamnik, J. Maier, Phys. Chem. Chem. Phys. 2003, 5, 5215.
- 56J. K. Shon, H. S. Lee, G. O. Park, J. Yoon, E. Park, G. S. Park, S. S. Kong, M. Jin, J. M. Choi, H. Chang, S. Doo, J. M. Kim, W. S. Yoon, C. Pak, H. Kim, G. D. Stucky, Nat. Commun. 2016, 7, 11049.
- 57L. Yu, S. Xi, C. Wei, W. Zhang, Y. Du, Q. Yan, Z. Xu, Adv. Energy Mater. 2015, 5, 1401517.
- 58X. Li, Y. Chen, H. Wang, H. Yao, H. Huang, Y. W. Mai, N. Hu, L. Zhou, Adv. Funct. Mater. 2016, 26, 376.