A Multifunctional Tb-MOF for Highly Discriminative Sensing of Eu3+/Dy3+ and as a Catalyst Support of Ag Nanoparticles
Guo-Wang Xu
College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002 China
Search for more papers by this authorYa-Pan Wu
College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002 China
Search for more papers by this authorWen-Wen Dong
College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002 China
Search for more papers by this authorJun Zhao
College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002 China
Search for more papers by this authorXue-Qian Wu
College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002 China
Search for more papers by this authorCorresponding Author
Dong-Sheng Li
College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Qichun Zhang
School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
E-mail: [email protected], [email protected]Search for more papers by this authorGuo-Wang Xu
College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002 China
Search for more papers by this authorYa-Pan Wu
College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002 China
Search for more papers by this authorWen-Wen Dong
College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002 China
Search for more papers by this authorJun Zhao
College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002 China
Search for more papers by this authorXue-Qian Wu
College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002 China
Search for more papers by this authorCorresponding Author
Dong-Sheng Li
College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Qichun Zhang
School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
Exploring novel multifunctional rare earth materials is very important because these materials have fundamental interests, such as new structural facts and connecting modes, as well as potential technological applications, including optics, magnetic properties, sorption, and catalytic behaviors. Especially, employing these nanomaterials for sensing or catalytic reactions is still very challenging. Herein, a new superstable, anionic terbium-metal–organic-framework, [H2N(CH3)2][Tb(cppa)2(H2O)2], (China Three Gorges University (CTGU-1), H2cppa = 5-(4-carboxyphenyl)picolinic acid), is successfully prepared, which can be used as a turn-on, highly-sensitive fluorescent sensor to detect Eu3+ and Dy3+, with a detection limitation of 5 × 10−8 and 1 × 10−4m in dimethylformamide, respectively. This result represents the first example of lanthanide-metal–organic-frameworks (Ln-MOF) that can be employed as a discriminative fluorescent probe to recognize Eu3+ and Dy3+. In addition, through ion exchanging at room temperature, Ag(I) can be readily reduced in situ and embedded in the anionic framework, which leads to the formation of nanometal-particle@Ln-MOF composite with uniform size and distribution. The as-prepared Ag@CTGU-1 shows remarkable catalytic performance to reduce 4-nitrophenol, with a reduction rate constant κ as large as 2.57 × 10−2 s−1; almost the highest value among all reported noble-metal-nanoparticle@MOF composites.
Supporting Information
Filename | Description |
---|---|
smll201602996-sup-0001-S1.pdf665.5 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 2011, 112, 1126.
- 2W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, X. Chen, Chem. Soc. Rev. 2015, 44, 1379.
- 3Y. Hasegawa, T. Nakanishi, RSC Adv. 2015, 5, 338.
- 4B. Liu, W. P. Wu, L. Hou, Y. Y. Wang, Chem. Commun. 2014, 50, 8731.
- 5E. G. Moore, A. P. S. Samuel, K. N. Raymond, Acc. Chem. Res. 2009, 42, 542.
- 6Z. Guo, X. Song, H. Lei, H. Wang, S. Su, H. Xu, G. Qian, H. Zhang, B. Chen, Chem. Commun. 2014, 51, 376.
- 7H. Xu, F. Liu, Y. Cui, B. Chen, G. Qian, Chem. Commun. 2011, 47, 3153.
- 8B. L. Chen, L. B. Wang, Y. Q. Xiao, F. R. Fronczek, M. Xue, Y. J. Cui, G. D. Qian, Angew. Chem., Int. Ed. 2009, 48, 500.
- 9J. Zhao, Y. N. Wang, W. W. Dong, Y. P. Wu, D. S. Li, Q. C. Zhang, Inorg. Chem. 2016, 55, 3265.
- 10L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2011, 112, 1105.
- 11Y. J. Cui, B. L. Chen, G. D. Qian, Coord. Chem. Rev. 2014, 273, 76.
- 12X. H. Wang, H. J. Chang, J. Xie, B. Z. Zhao, B. T. Liu, S. L. Xu, W. B. Pei, N. Ren, L. Huang, W. Huang, Coord. Chem. Rev. 2014, 273, 201.
- 13R. Wang, X. Y. Dong, H. Xu, R. B. Pei, M. L. Ma, S. Q. Zang, H. W. Hou, T. C. W. Mak, Chem. Commun. 2014, 50, 9153.
- 14C. Q. Zhang, Y. Yan, Q. H. Pan, L. B. Sun, H. M. He, Y. L. Liu, Z. Q. Liang, J. Y. Li, Dalton Trans. 2015, 44, 13340.
- 15L. H. Cao, F. Shi, W. M. Zhang, S. Q. Zang, T. C. W. Mak, Chem. Eur. J. 2015, 21, 15705.
- 16X. Y. Dong, R. Wang, J. Z. Wang, S. Q. Zang, T. C. W. Mak, J. Mater. Chem. A 2015, 3, 641.
- 17R. Li, X. L. Qu, Y. H. Zhang, H. L. Han, X. Li, CrystEngComm 2016, 18, 5890.
- 18L. J. Zhou, W. H. Deng, Y. L. Wang, G. Xu, S. G. Yin, Q. Y. Liu, Inorg. Chem. 2016, 55, 6271.
- 19H. Xu, M. Fang, C. S. Cao, W. Z. Qiao, B. Zhao, Inorg. Chem. 2016, 55, 4790.
- 20H. Xu, C. S. Cao, X. M. Kang, B. Zhao, Dalton Trans. 2016, 45, 18003.
- 21C. Yang, L. M. Fu, Y. Wang, J. P. Zhang, W. T. Wong, X. C. Ai, Y. F. Qiao, B. S. Zou, L. L. Gui, Angew. Chem., Int. Ed. 2004, 43, 5010.
- 22T. Wen, D. X. Zhang, H. X. Zhang, H. B. Zhang, J. Zhang, D. S. Li, Chem. Commun. 2014, 50, 8754.
- 23Y. Z. Chen, Y. X. Zhou, H. Wang, J. Lu, T. Uchida, Q. Xu, S. H. Yu, H. L. Jiang, ACS Catal. 2015, 5, 2062.
- 24L. T. Guo, Y. Y. Cai, J. M. Ge, Y. N. Zhang, L. H. Gong, X. H. Li, K. X. Wang, Q. Z. Ren, J. Su, J. S. Chen, ACS Catal. 2015, 5, 388.
- 25C. Hao, L. Xu, W. Ma, X. Wu, L. Wang, H. Kuang, C. Xu, Adv. Funct. Mater. 2015, 25, 5816.
- 26A. Dhakshinamoorthy, H. Garcia, Chem. Soc. Rev. 2012, 41, 5262.
- 27J. Gao, L. Bai, Q. Zhang, Y. Li, G. Rakesh, J.-M. Lee, Y. Yang, Q. C. Zhang, Dalton Trans. 2014, 43, 2559.
- 28H. L. Jiang, Q. Xu, Chem. Commun. 2011, 47, 3351.
- 29J. D. Xiao, Q. C. Shang, Y. J. Xiong, Q. Zhang, Y. Luo, S. H. Yu, H. L. Jiang, Angew. Chem., Int. Ed. 2016, 55, 9389.
- 30Q. L. Zhu, Q. Xu, Chem. Soc. Rev. 2014, 43, 5468.
- 31W. Zhang, G. Lu, C. Cui, Y. Liu, S. Li, W. Yan, C. Xing, Y. R. Chi, Y. Yang, F. Huo, Adv. Mater. 2014, 26, 4056.
- 32S. Hermes, M. K. Schroter, R. Schmid, L. Khodeir, M. Muhler, A. Tissler, R. W. Fischer, R. A. Fischer, Angew. Chem., Int. Ed. 2005, 44, 6237.
- 33Q. Yang, Q. Xu, S. H. Yu, H. L. Jiang, Angew. Chem., Int. Ed. 2016, 55, 3685.
- 34Y. Z. Chen, Q. Xu, S. H. Yu, H. L. Jiang, Small 2015, 11, 71.
- 35L. Shen,W. Wu, R. Liang, R. Lin, L. Wu, Nanoscale 2013, 5, 9374.
- 36V. Pascanu, P. R. Hansen, A. B. Gómez, C. Ayats, A. E. Ayats-Prats, M. J. Johansson, M. Pericas, B. Martın-Matute, ChemSusChem 2015, 8, 123.
- 37Y. H. Han, C. B. Tian, P. Lin, S. W. Du, J. Mater. Chem. A 2015, 3, 24525.
- 38S. Yang, X. Lin, A. J. Blake, G. S. Walker, P. Hubberstey, N. R. Champness, M. Schroder, Nat. Chem. 2009, 1, 487.
- 39J. An, S. J. Geib, N. L. Rosi, J. Am. Chem. Soc. 2009, 131, 8376.
- 40D. T. Genna, A. G. WongFoy, A. J. Matzger, M. S. Sanford, J. Am. Chem. Soc. 2013, 135, 10586.
- 41M. L. Han, G. W. Xu, D. S. Li, L. M. Azofra, J. Zhao, B. L. Chen, C. H. Sun, ChemistrySelect 2016, 1, 3555.
- 42S. Bhattacharyya, A. Chakraborty, K. Jayaramulu, A. Hazra, T. K. Maji, Chem. Commun. 2014, 50, 13567.
- 43Y. K. Hwang, D. Y. Hong, J. S. Chang, S. H. Jhung, Y. K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Ferey, Angew. Chem., Int. Ed. 2008, 47, 4144.
- 44L. Lu, H. Wang, Y. Zhou, S. Xi, H. Zhang, J. Hu, B. Zhao, Chem. Commun. 2002, 144.
- 45J. Yang, F. Zhang, H. Lu, X. Hong, H. Jiang, Y. Wu, Y. Li, Angew. Chem., Int. Ed. 2015, 54, 10889.
- 46Q. Song, Y. Jia, B. Luo, H. He, L. Zhi, Small 2013, 9, 2460.
- 47L. Chen, X. Chen, H. Liu, Y. Li, Small 2015, 11, 2642.
- 48X. Zhang, Z. Su, Adv. Mater. 2012, 24, 4574.
- 49S. Choi, H. J. Lee, M. Oh, Small 2016, 12, 2425.
- 50L. Chen, X. Chen, H. Liu, Y. Li, Small 2015, 11, 2586.
- 51H. L. Jiang, T. Akita, T. Ishida, M. Haruta, Q. Xu, J. Am. Chem. Soc. 2011, 133, 1304.
- 52R. J. T. Houk, B. W. Jacobs, F. E. Gabaly, N. N. Chang, A. A. Talin, D. D. Graham, S. D. House, I. M. Robertson, M. D. Allendorf, Nano Lett. 2009, 9, 3413.
- 53P. Herves, M. Perez-Lorenzo, L. M. Liz-Marzan, J. Dzubiella, Y. Lu, M. Ballauff, Chem. Soc. Rev. 2012, 41, 5577.
- 54R. J. T. Houk, B. W. Jacobs, F. E. Gabaly, N. N. Chang, A. A. Talin, D. D. Graham, S. D. House, I. M. Robertson, M. D. Allendorf, Nano Lett. 2009, 9, 3413.
- 55B. Volosskiy, K. Niwa, Y. Chen, Z. Zhao, N. O. Weiss, X. Zhong, M. Ding, C. Lee, Y. Huang, X. Duan, ACS Nano 2015, 9, 3044.
- 56P. Zhao, X. Feng, D. Huang, G. Yang, D. Astruc, Coord. Chem. Rev. 2015, 287, 114.
- 57P. Zhang, C. L Shao, Z. Y. Zhang, M. Y. Zhang, J. B. Mu, Z. C. Guo, Y. C. Liu, Nanoscale 2011, 3, 3357.
- 58Z. Y. Zhang, C. L. Shao, Y. Y. Sun, J. B. Mu, M. Y. Zhang, P. Zhang, Z. C. Guo, P. P. Liang, C. H. Wang, Y. C. Liu, J. Mater. Chem. 2012, 22, 1387.