Nitrogen-Doped Ordered Mesoporous Anatase TiO2 Nanofibers as Anode Materials for High Performance Sodium-Ion Batteries
Ying Wu
Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071 China
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorXiaowu Liu
Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorZhenzhong Yang
Beijing Laboratory for Electron Microscopy, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing, 100190 China
Search for more papers by this authorLin Gu
Beijing Laboratory for Electron Microscopy, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing, 100190 China
Collaborative Innovation Center of Quantum Matter, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Yan Yu
Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071 China
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026 China
E-mail: [email protected]Search for more papers by this authorYing Wu
Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071 China
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorXiaowu Liu
Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorZhenzhong Yang
Beijing Laboratory for Electron Microscopy, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing, 100190 China
Search for more papers by this authorLin Gu
Beijing Laboratory for Electron Microscopy, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing, 100190 China
Collaborative Innovation Center of Quantum Matter, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Yan Yu
Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071 China
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026 China
E-mail: [email protected]Search for more papers by this authorGraphical Abstract
Nitrogen-doped ordered mesoporous TiO2 nanofibers (N-MTO) have been fabricated by electrospinning and subsequent nitridation treatment. The N-doping in TiO2 leads to the formation of Ti3+, resulting in the improved electron conductivity of TiO2. In addition, one-dimensional (1D) N-MTO nanostructure possesses very short diffusion length of Na+/e− in N-MTO, easy access of electrolyte, and high conductivity transport of electrons along the percolating fibers. The N-MTO shows excellent sodium storage performance.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
smll201600606-sup-0001-S1.pdf356.5 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. B. Goodenough, K. S. Park, J. Am. Chem. Soc. 2013, 135, 1167.
- 2V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 2011, 4, 3243.
- 3B. Scrosati, Electrochim. Acta 2000, 45, 2461.
- 4B. L. Ellis, W. R. Makahnouk, Y. Makimura, K. Toghill, L. F. Nazar, Nat. Mater. 2007, 6, 749.
- 5N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636.
- 6V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-González, T. Rojo, Energy Environ. Sci. 2012, 5, 5884.
- 7Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Nat. Commun. 2014, 5, 4033.
- 8M. Mortazavi, J. Deng, V. B. Shenoy, N. V. Medhekar, J. Power Sources 2013, 225, 207.
- 9C. Bommier, X. Ji, Isr. J. Chem. 2015, 55, 486.
- 10W. Zhou, W. Li, J. Q. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. Fu, D. Zhao, J. Am. Chem. Soc. 2014, 136, 9280.
- 11Y. Yeo, J. W. Jung, K. Park, I. D. Kim, Sci. Rep. 2015, 5, 13862.
- 12K. T. Kim, G. Ali, K. Y. Chung, C. S. Yoon, H. Yashiro, Y. K. Sun, J. Lu, K. Amine, S. T. Myung, Nano Lett. 2014, 14, 416.
- 13L. Wu, D. Buchholz, D. Bresser, L. Gomes Chagas, S. Passerini, J. Power Sources 2014, 251, 379.
- 14H. Xiong, M. D. Slater, M. Balasubramanian, C. S. Johnson, T. Rajh, J. Phys. Chem. Lett. 2011, 2, 2560.
- 15P. G. Bruce, B. Scrosati, J. M. Tarascon, Angew. Chem. 2008, 47, 2930.
- 16H. Liu, K. Cao, X. Xu, L. Jiao, Y. Wang, H. Yuan, ACS Appl. Mater. Interfaces 2015, 7, 11239.
- 17J.-Y. Hwang, S.-T. Myung, J.-H. Lee, A. Abouimrane, I. Belharouak, Y.-K. Sun, Nano Energy 2015, 16, 218.
- 18Y. Ge, J. Zhu, Y. Lu, C. Chen, Y. Qiu, X. Zhang, Electrochim. Acta 2015, 176, 989.
- 19Y. Ge, H. Jiang, J. Zhu, Y. Lu, C. Chen, Y. Hu, Y. Qiu, X. Zhang, Electrochim. Acta 2015, 157, 142.
- 20X. Lu, W. Yang, Z. Quan, T. Lin, L. Bai, L. Wang, F. Huang, Y. Zhao, J. Am. Chem. Soc. 2014, 136, 419.
- 21M. Fehse, S. Cavaliere, P. E. Lippens, I. Savych, A. Iadecola, L. Monconduit, D. J. Jones, J. Rozière, F. Fischer, C. Tessier, L. Stievano, J. Phys. Chem. C 2013, 117, 13827.
- 22H. Yang, C.-K. Lan, J.-G. Duh, J. Power Sources 2015, 288, 401.
- 23H. Han, T. Song, J.-Y. Bae, L. F. Nazar, H. Kim, U. Paik, Energy Environ. Sci. 2011, 4, 4532.
- 24Y. Zhang, Q. Fu, Q. Xu, X. Yan, R. Zhang, Z. Guo, F. Du, Y. Wei, D. Zhang, G. Chen, Nanoscale 2015, 7, 12215.
- 25Y. Zhang, F. Du, X. Yan, Y. Jin, K. Zhu, X. Wang, H. Li, G. Chen, C. Wang, Y. Wei, ACS Appl. Mater. Interfaces 2014, 6, 4458.
- 26J.-Y. Shin, J. H. Joo, D. Samuelis, J. Maier, Chem. Mater. 2012, 24, 543.
- 27J. Zhang, L. Zhang, J. Zhang, Z. Zhang, Z. Wu, J. Alloys Compd. 2015, 642, 28.
- 28J. Zheng, G. Ji, P. Zhang, X. Cao, B. Wang, L. Yu, Z. Xu, Chemistry 2015, 21, 1.
10.1002/chem.201490218 Google Scholar
- 29D. Liu, Y. Zhang, P. Xiao, B. B. Garcia, Q. Zhang, X. Zhou, Y.-H. Jeong, G. Cao, Electrochim. Acta 2009, 54, 6816.
- 30V. S. Saji, Y.-S. Kim, T.-H. Kim, J. Cho, H.-K. Song, Phys. Chem. Chem. Phys. 2011, 13, 19226.
- 31J. Liu, K. Song, P. A. van Aken, J. Maier, Y. Yu, Nano Lett. 2014, 14, 2597.
- 32C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nat. Nanotechnol. 2008, 3, 31.
- 33J. Liu, K. Tang, K. Song, P. A. van Aken, Y. Yu, J. Maier, Phys. Chem. Chem. Phys. 2013, 15, 20813.
- 34S. Chattopadhyay, J. Saha, G. De, J. Mater. Chem. A 2014, 2, 19029.
- 35S.-T. Myung, M. Kikuchi, C. S. Yoon, H. Yashiro, S.-J. Kim, Y.-K. Sun, B. Scrosati, Energy Environ. Sci. 2013, 6, 2609.
- 36H. Cui, W. Zhao, C. Yang, H. Yin, T. Lin, Y. Shan, Y. Xie, H. Gu, F. Huang, J. Mater. Chem. A 2014, 2, 8612.
- 37Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen, D. Wan, F. Xu, F. Huang, J. Lin, X. Xie, M. Jiang, Energy Environ. Sci. 2013, 6, 3007.
- 38A. Sinhamahapatra, J.-P. Jeon, J.-S. Yu, Energy Environ. Sci. 2015, 8, 3539.
- 39Y. Yu, L. Gu, C. Wang, A. Dhanabalan, P. A. van Aken, J. Maier, Angew. Chem. Int. Ed. 2009, 48, 6485.
- 40A. Vu, Y. Qian, A. Stein, Adv. Energy Mater. 2012, 2, 1056.
- 41Y. Zhang, Y. Yang, H. Hou, X. Yang, J. Chen, M. Jing, X. Jia, X. Ji, J. Mater. Chem. A 2015, 3, 18944.
- 42W. Zhang, D. Liu, Electrochim. Acta 2015, 156, 53.
- 43L.-Z. Fan, S.-S. Chi, L.-N. Wang, W.-L. Song, M. He, L. Gu, ChemElectroChem 2015, 2, 421.
- 44J. Zheng, Y. Liu, G. Ji, P. Zhang, X. Cao, B. Wang, C. Zhang, X. Zhou, Y. Zhu, D. Shi, ACS Appl. Mater. Interfaces 2015, 7, 23431.
- 45W. Fang, Y. Zhou, C. Dong, M. Xing, J. Zhang, Catal. Today 2016, 266, 188.
- 46F. Peng, L. Cai, H. Yu, H. Wang, J. Yang, J. Solid State Chem. 2008, 181, 130.
- 47K. S. Han, J. W. Lee, Y. M. Kang, J. Y. Lee, J. K. Kang, Small 2008, 4, 1682.
- 48H. Irie, Y. Watanabe, K. Hashimoto, J. Phys. Chem. B 2003, 107, 5483.
- 49S.-M. Oh, J.-Y. Hwang, C. Yoon, J. Lu, K. Amine, I. Belharouak, Y.-K. Sun, ACS Appl. Mater. Interfaces 2014, 6, 11295.
- 50Y. Zhang, X. Pu, Y. Yang, Y. Zhu, H. Hou, M. Jing, X. Yang, J. Chen, X. Ji, Phys. Chem. Chem. Phys. 2015, 17, 15764.
- 51L. Wu, D. Bresser, D. Buchholz, G. A. Giffin, C. R. Castro, A. Ochel, S. Passerini, Adv. Energy Mater. 2015, 5, 1401142.
- 52L. Wu, D. Bresser, D. Buchholz, S. Passerini, J. Electrochem. Soc. 2014, 162, A3052.
- 53A. Rudola, K. Saravanan, C. W. Mason, P. Balaya, J. Mater. Chem. A 2013, 1, 2653.
- 54R. Alcántara, P. Lavela, G. F. Ortiz, J. L. Tirado, Electrochem. Solid-State Lett. 2005, 8, A222.
- 55Y. Xu, E. M. Lotfabad, H. Wang, B. Farbod, Z. Xu, A. Kohandehghan, D. Mitlin, Chem. Commun. 2013, 49, 8973.
- 56D. Zane, M. Carewska, S. Scaccia, F. Cardellini, P. P. Prosini, Electrochim. Acta 2004, 49, 4259.
- 57J. Lee, Y. M. Chen, Y. Zhu, B. D. Vogt, ACS Appl. Mater. Interfaces 2014, 6, 21011.