Microbial Synthesis of Multishaped Gold Nanostructures
Sujoy K. Das
Department of Biological Chemistry Indian Association for the Cultivation of Science Kolkata (India)
Present Address: School of Biotechnology, Dublin City University, Dublin 9, Ireland
Search for more papers by this authorAkhil R. Das
Polymer Science Unit Indian Association for the Cultivation of Science Kolkata (India)
Search for more papers by this authorCorresponding Author
Arun K. Guha
Department of Biological Chemistry Indian Association for the Cultivation of Science Kolkata (India)
Department of Biological Chemistry Indian Association for the Cultivation of Science Kolkata (India).Search for more papers by this authorSujoy K. Das
Department of Biological Chemistry Indian Association for the Cultivation of Science Kolkata (India)
Present Address: School of Biotechnology, Dublin City University, Dublin 9, Ireland
Search for more papers by this authorAkhil R. Das
Polymer Science Unit Indian Association for the Cultivation of Science Kolkata (India)
Search for more papers by this authorCorresponding Author
Arun K. Guha
Department of Biological Chemistry Indian Association for the Cultivation of Science Kolkata (India)
Department of Biological Chemistry Indian Association for the Cultivation of Science Kolkata (India).Search for more papers by this authorAbstract
The development of methodologies for the synthesis of nanoparticles of well-defined size and shape is a challenging one and constitutes an important area of research in nanotechnology. This Full Paper describes the controlled synthesis of multishaped gold nanoparticles at room temperature utilizing a simple, green chemical method by the interaction of chloroauric acid (HAuCl4 · 3H20) and cell-free extract of the fungal strain Rhizopus oryzae. The cell-free extract functions as a reducing, shape-directing, as well as stabilizing, agent. Different shapes of gold nanocrystals, for example, triangular, hexagonal, pentagonal, spherical, spheroidal, urchinlike, two-dimensional nanowires, and nanorods, are generated by manipulating key growth parameters, such as gold ion concentration, solution pH, and reaction time. The synthesized nanostructures are characterized by UV/Vis and Fourier-transform infrared spectroscopy, transmission electron microscopy, and energy dispersive X-ray analysis studies. Electron diffraction patterns reveal the crystalline nature of the nanoparticles and a probable mechanism is proposed for the formation of the different structural entities.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
smll_200902011_sm_suppdata.pdf4.7 MB | suppdata |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 M. A. El-Sayed, Acc. Chem. Res. 2001, 34, 257–262.
- 2 S. Chen, Y. J. Yang, J. Am. Chem. Soc. 2002, 124, 5280–5281.
- 3 L. N. Lewis, Chem. Rev. 1993, 93, 2693–2730.
- 4 Y. W. Charles Cao, R. Jin, C. A. Mirkin, Science 2002, 297, 1536–1540.
- 5 C. W. Corti, R. J. Holiday, Gold Bulletin 2004, 37, 20.
- 6 H. Huang, X. Yang, Colloids Surf. A 2005, 255, 11–17.
- 7 H. M. Chen, R.-S. Liu, M.-Y. Lo, S.-C. Chang, L.-D. Tsai, Y.-M. Peng, J.-F. Lee, J. Phys. Chem. C. 2008, 112, 7522–7526.
- 8 L. A. Peyser, A. E. Vinson, A. P. Bartko, R. M. Dickson, Science 2001, 291, 103–106.
- 9 H. M. Chen, R. S. Liu, H. Li, H. C. Zeng, Angew. Chem. Int. Ed. 2006, 45, 2713–2717.
- 10 D. A. Schultz, Curr. Opin. Biotechnol. 2003, 14, 13–22.
- 11 A. K. Salem, P. C. Searson, K. W. Leong, Nat. Mater. 2003, 2, 668–671.
- 12 E. Katz, J. Willner, Angew. Chem. Int. Ed. 2004, 43, 6042–6108.
- 13 Q. Ji, S. Acharya, P. J. Hill, G. Richards, K. Ariga, Adv. Mater. 2008, 20, 4027–4032.
- 14 S. S. Wong, E. Joselevich, A. T. Wooley, C. L. Cheung, C. M. Lieber, Nature 1998, 394, 52–55.
- 15 Z. Y. Tang, N. A. Kotov, M. Giersig, Science 2002, 297, 237–240.
- 16 R. B. Grubbs, Nat. Mater. 2007, 6, 553–555.
- 17
C. M. Niemeyer,
W. Burger,
I. Peplies,
Angew. Chem, Int. Ed.
1998,
37,
2265–2268.
10.1002/(SICI)1521-3773(19980904)37:16<2265::AID-ANIE2265>3.0.CO;2-F CAS PubMed Web of Science® Google Scholar
- 18 R. Lévy, N. T. K. Thanh, R. C. Doty, I. Hussain, R. J. Nichols, D. J. Schiffrin, M. Brust, D. G. Ferning, J. Am. Chem. Soc. 2004, 126, 10076–10084.
- 19 C. J. Murphy, Science 2002, 298, 2139–2141.
- 20 V. F. Puntes, K. M. Krishnan, A. P. Alivisatos, Science 2001, 291, 2115–2117.
- 21 P. T. Anstas, J. C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, New York 1998.
- 22 T. Klaus, R. Joerger, E. Olsson, C. G. Granqvist, Proc. Natl Acad. Sci. USA 1999, 96, 13611–13614.
- 23 J. Xie, J. Y. Lee, D. I. C. Wang, Y. P. Ting, J. Phys. Chem. C 2007, 111, 16858–16865.
- 24
P. Mukherjee,
A. Ahmad,
D. Mandal,
S. Senapati,
S. R. Sainkar,
M. I. Khan,
R. Ramani,
R. Parischa,
P. V. Ajayakumar,
M. Alam,
M. Sastry,
R. Kumar,
Angew. Chem. Int. Ed.
2001,
40,
3585–3588.
10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- 25 S. Silver, FEMS Microbiol. Rev. 2003, 27, 341–353.
- 26 R. Y. Sweeney, C. Mao, X. Gao, J. L. Burt, A. M. Belcher, G. Georgiou, B. L. Iverson, Chem. Biol. 2004, 11, 1553–1559.
- 27 D. R. Loevely, J. F. Stolz, E. J. P. Philips, Nature 1987, 330, 252–254.
- 28 S. Brown, M. Sarikaya, E. Johnson, J. Mol. Biol. 2000, 299, 725–735.
- 29 S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, Nat. Mater. 2004, 3, 482–488.
- 30 S. K. Das, A. R. Das, A. K. Guha, Langmuir 2009, 25, 8192–8199.
- 31 A. Ahmad, S. Senapati, M. I. Khan, R. Kumar, M. Sastry, Langmuir 2003, 19, 3550–3553.
- 32 A. Kumar, P. K. Vemula, P. M. Ajayan, G. John, Nat. Mater. 2008, 7, 236–241.
- 33 J. Xie, Y. Zheng, J. Y. Ying, J. Am. Chem. Soc. 2009, 131, 888–889.
- 34 S. K. Das, J. Bhowal, A. R. Das, A. K. Guha, Langmuir 2006, 22, 7265–7272.
- 35 C. D. Keating, K. K. Kovaleski, M. J. Natan, J. Phys. Chem. B 1998, 102, 9414.
- 36 J. Xie, J. Y. Lee, D. I. C. Wang, Y. P. Ting, Small 2007, 3, 672–682.
- 37 Y. Sun, B. Mayers, Y. Xia, Nano Lett. 2003, 3, 675–679.
- 38 G. Carotenuto, L. Nicolais, Polym. Int. 2004, 53, 2009.
- 39 M. Zhou, S. Chen, S. Zhao, J. Phys. Chem. B 2006, 110, 4510.
- 40 B. Nikoobakht, M. A. El-Sayed, J. Phys. Chem. A 2003, 107, 3372–3378.
- 41 B. Nikoobakht, J. P. Wang, M. A. El-Sayed, Chem. Phys. Lett. 2002, 366, 17–23.
- 42 G. Mie, Ann. Phys. 1908, 25, 377–445.
- 43 R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, Science 2001, 294, 1901–1903.
- 44 K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, J. Phys. Chem. B 2003, 107, 668–677.
- 45 N. Malikova, I. Pastoriza-Santos, M. Schierhorn, N. A. Kotov, L. M. Liz-Marzan, Langmuir 2002, 18, 3694–3697.
- 46 S. Link, M. Mohamed, M. El-Sayed, J. Phys. Chem. B 1999, 103, 3073–3077.
- 47 A. J. Haes, S. L. Zou, G. C. Schatz, R. P. Van Duyne, J. Phys. Chem. B 2004, 108, 6961–6968.
- 48 J. M. Petroski, Z. L. Wang, T. C. Green, M. A. EI-Sayed, J. Phys. Chem. B 1998, 102, 3316–3320.
- 49 S. H. Chen, Z. L. Wang, J. Ballato, S. H. Foulger, D. L. Carroll, J. Am. Chem. Soc. 2003, 125, 16186–16187.
- 50 P. Bayliss, Mineral Powder Diffraction File Date Book, JCPDS, Swarthmore, PA 1986.
- 51 L. Lu, K. Ai, Y. Ozaki, Langmuir 2008, 24, 1058–1063.
- 52 Y. Y. Yu, S. S. Chang, C. L. Lee, C. R. C. Wang, J. Phys. Chem. B 1997, 101, 6661–6664.
- 53 M. Adachi, K. Mori, Y. Sato, L. Pei, J. Chem. Eng. Jpn. 2004, 37, 604–608.
- 54 L. Pei, K. Mori, M. Adachi, Langmuir 2004, 20, 7837–7843.
- 55 X. Peng, J. Wickham, A. P. Alivisatos, J. Am. Chem. Soc. 1998, 120, 5343–5344.
- 56 C. J. Orendorff, C. J. Murphy, J. Phys. Chem. B 2006, 110, 3990–3994.
- 57 N. Malikova, I. Pastoriza-Santos, M. Schierhorn, N. A. Kotov, L. M. Liz-Marzan, Langmuir 2002, 18, 3694–3697.
- 58 C. J. Kiely, J. Fink, M. Brust, D. Bethell, D. J. Schiffrin, Nature 1998, 396, 444–446.
- 59 J. Villain, Physics of Crystal Growth, Cambridge University Press, Cambridge, UK 1998.
- 60 C. J. Orendorff, T. K. Sau, C. J. Murphy, Small 2006, 2, 636–639.
- 61 T. Yonezawa, S. Onoue, N. Kimizuka, Chem. Lett. 2002, 31, 1172–1173.
- 62 S. Biggs, P. Mulvaney, C. F. Zukoski, F. Grieser, J. Am. Chem. Soc. 1994, 116, 9150–9157.
- 63 C. J. Murphy, T. K. Sau, Langmuir 2004, 20, 6414.
- 64 N. R. Jana, L. Gearheart, C. J. Murphy, Adv. Mater. 2001, 13, 1389.
- 65 O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall, J. Biol. Chem. 1951, 193, 265–275.