Functional Single-Virus–Polyelectrolyte Hybrids Make Large-Scale Applications of Viral Nanoparticles More Efficient†
Xiaoyu Wang
Center for Biomaterials and Biopathways and Department of Chemistry Zhejiang University Hangzhou, Zhejiang 310027 (P. R. China)
Search for more papers by this authorYongqiang Deng
State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing 100071 (P. R. China)
Search for more papers by this authorHongyan Shi
State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing 100071 (P. R. China)
Search for more papers by this authorZhu Mei
State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing 100071 (P. R. China)
Search for more papers by this authorHui Zhao
State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing 100071 (P. R. China)
Search for more papers by this authorWei Xiong
State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing 100071 (P. R. China)
Search for more papers by this authorPeng Liu
Center for Biomaterials and Biopathways and Department of Chemistry Zhejiang University Hangzhou, Zhejiang 310027 (P. R. China)
Search for more papers by this authorYu Zhao
Department of Traditional Chinese Medicine and Natural Drug Research Zhejiang University Hangzhou 310058 (P. R. China)
Search for more papers by this authorCorresponding Author
Chengfeng Qin
State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing 100071 (P. R. China)
Chengfeng Qin, State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing 100071 (P. R. China).
Ruikang Tang, Center for Biomaterials and Biopathways and Department of Chemistry Zhejiang University Hangzhou, Zhejiang 310027 (P. R. China).
Search for more papers by this authorCorresponding Author
Ruikang Tang
Center for Biomaterials and Biopathways and Department of Chemistry Zhejiang University Hangzhou, Zhejiang 310027 (P. R. China)
Chengfeng Qin, State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing 100071 (P. R. China).
Ruikang Tang, Center for Biomaterials and Biopathways and Department of Chemistry Zhejiang University Hangzhou, Zhejiang 310027 (P. R. China).
Search for more papers by this authorXiaoyu Wang
Center for Biomaterials and Biopathways and Department of Chemistry Zhejiang University Hangzhou, Zhejiang 310027 (P. R. China)
Search for more papers by this authorYongqiang Deng
State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing 100071 (P. R. China)
Search for more papers by this authorHongyan Shi
State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing 100071 (P. R. China)
Search for more papers by this authorZhu Mei
State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing 100071 (P. R. China)
Search for more papers by this authorHui Zhao
State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing 100071 (P. R. China)
Search for more papers by this authorWei Xiong
State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing 100071 (P. R. China)
Search for more papers by this authorPeng Liu
Center for Biomaterials and Biopathways and Department of Chemistry Zhejiang University Hangzhou, Zhejiang 310027 (P. R. China)
Search for more papers by this authorYu Zhao
Department of Traditional Chinese Medicine and Natural Drug Research Zhejiang University Hangzhou 310058 (P. R. China)
Search for more papers by this authorCorresponding Author
Chengfeng Qin
State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing 100071 (P. R. China)
Chengfeng Qin, State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing 100071 (P. R. China).
Ruikang Tang, Center for Biomaterials and Biopathways and Department of Chemistry Zhejiang University Hangzhou, Zhejiang 310027 (P. R. China).
Search for more papers by this authorCorresponding Author
Ruikang Tang
Center for Biomaterials and Biopathways and Department of Chemistry Zhejiang University Hangzhou, Zhejiang 310027 (P. R. China)
Chengfeng Qin, State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing 100071 (P. R. China).
Ruikang Tang, Center for Biomaterials and Biopathways and Department of Chemistry Zhejiang University Hangzhou, Zhejiang 310027 (P. R. China).
Search for more papers by this authorThis study was financially supported by the National Natural Science Foundation of China (20871102 and 30600530) and the National Basic Research Program of China (2005CB523009 and 2007CB516806). The authors thank Yan Qin and Yanli Tong for SEM technical assistance, Yuchuan Li and Ge Yan for TEM examination, and Lijun Wang for writing assistance.
Graphical Abstract
Single enveloped viruses can be prepared on a large scale with high efficiency by a layer-by-layer method. The virus/polyelectrolyte core/shell nanoparticles (VCSPs) exhibit unique characteristics, such as direct observation by electron microscopy without staining, easy separation and concentration, rapid perinuclear delivery, and improved biological safety, which resolve the conventional shortcomings of viruses in nanoscale applications.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
smll_200901795_sm_suppdata.pdf253.7 KB | suppdata |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 S. Zhang, Nat. Biotechnol. 2003, 21, 1171– 1178.
- 2 a) N. C. Seeman, Nature 2003, 421, 427– 431; b) P. W. K. Rothemund, Nature 2006, 440, 297– 302.
- 3 A. de la Escosura, R. J. M. Nolte, J. J. L. M. Cornelissen, J. Mater. Chem. 2009, 19, 2274– 2278.
- 4
M. Fischlechner,
E. Donath,
Angew. Chem.
2007,
119,
3246–
3255.
Angew. Chem. Int. Ed.
2007,
46,
3184–
3193.
10.1002/ange.200603445 Google Scholar
- 5 T. Douglas, M. Young, Adv. Mater. 1999, 11, 679– 681.
- 6 a) T. Li, Z. Niu, T. Emrick, T. P. Russell, Q. Wang, Small 2008, 4, 1624– 1629; b) T. Li, L. Wu, N. Suthiwangcharoen, M. A. Bruckman, D. Cash, J. S. Hudson, S. Ghoshroyc, Q. Wang, Chem. Commun. 2009, 2869– 2871.
- 7 a) N. Nishiyama, Nat. Nanotechnol. 2007, 2, 203– 204; b) N. Sanvicens, M. P. Marco, Trends Biotechnol. 2008, 26, 425– 433.
- 8 K. S. Raja, Q. Wang, M. J. Gonzalez, M. Manchester, J. E. Johnson, M. G. Finn, Biomacromolecules 2003, 4, 472– 476.
- 9 a) A. S. Blum, C. M. Soto, C. D. Wilson, T. L. Brower, S. K. Pollack, T. L. Schull, A. Chatterji, T. Lin, J. E. Johnson, C. Amsinck, P. Franzon, R. Shashidhar, B. R. Ratna, Small 2005, 1, 702– 706; b) N. F. Steinmetz, G. P. Lomonossoff, D. J. Evans, Small 2006, 2, 530– 533.
- 10 a) S.-W. Lee, C. Mao, C. E. Flynn, A. M. Belcher, Science 2002, 296, 892– 895; b) N. F. Steinmetz, S. N. Shah, J. E. Barclay, G. Rallapalli, G. P. Lomonossoff, D. J. Evans, Small 2009, 5, 813– 816; c) X. Wang, Z. Niu, S. Li, Q. Wang, X. Li, J. Biomed. Mater. Res. A 2008, 87A, 8– 14.
- 11 N. G. Portney, A. A. Martinez-Morales, M. Ozkan, ACS Nano 2008, 2, 191– 196.
- 12 M. Fischlechner, U. Reibetanz, M. Zaulig, D. Enderlein, J. Romanova, S. Leporatti, S. Moya, E. Donath, Nano Lett. 2007, 7, 3540– 3546.
- 13 R. Singh, K. T. Al-Jamal, L. Lacerda, K. Kostarelos, ACS Nano 2008, 2, 1040– 1050.
- 14 a) L. S. Young, P. F. Searle, D. Onion, V. Mautner, J. Pathol. 2006, 208, 299– 318; b) P. Turner, A. Petch, M. Al-Rubeai, Biotechnol. Prog. 2007, 23, 423– 429.
- 15 D. H. Thompson, ACS Nano 2008, 2, 821– 826.
- 16 R. Cattaneo, T. Miest, E. V. Shashkova, M. A. Barry, Nat. Rev. Microbiol. 2008, 6, 529– 540.
- 17 C. Vauthier, K. Bouchemal, Pharm. Res. 2009, 26, 1025– 1058.
- 18 L. Pedro, S. S. Soares, G. N. M. Ferreira, Chem. Eng. Technol. 2008, 31, 815– 825.
- 19 a) A. Diaspro, D. Silvano, S. Krol, O. Cavalleri, A. Gliozzi, Langmuir, 2002, 18, 5047– 5050; b) O. Kreft, R. Georgieva, H. Baeumler, M. Steup, B. Mueller-Roeber, G. B. Sukhorukov, H. Möhwald, Macromol. Rapid Commun. 2006, 27, 435– 440; c) B. Wang, P. Liu, W. Jiang, H. Pan, X. Xu, R. Tang, Angew. Chem. 2008, 120, 3616– 3620. Angew. Chem. Int. Ed. 2008, 47, 3560– 3564; d) O. P. Tiourina, G. B. Sukhorukov, Int. J. Pharm. 2002, 242, 155– 161.
- 20
a)
F. Caruso,
R. A. Caruso,
H. Moehwald,
Science
1998,
282,
1111–
1114;
b)
C. S. Peyratout,
L. Daehne,
Angew. Chem.
2004,
116,
3850–
3872.
Angew. Chem. Int. Ed.
2004,
43,
3762–
3783;
10.1002/ange.200300568 Google Scholarc) K. S. Mayya, B. Schoeler, F. Caruso, Adv. Funct. Mater. 2003, 13, 183– 188.
- 21 a) D. I. Gittins, F. Caruso, Adv. Mater. 2000, 12, 1947– 1949; b) D. I. Gittins, F. Caruso, J. Phys. Chem. B 2001, 105, 6846– 6852.
- 22 A. P. R. Johnston, C. Cortez, A. S. Angelatos, F. Caruso, Curr. Opin. Colloid Interface Sci. 2006, 11, 203– 209.
- 23 Z. Tang, Y. Wang, P. Podsiadlo, N. A. Kotov, Adv. Mater. 2006, 18, 3203– 3224.
- 24 L. P. Gaspar, Y. S. Mendes, A. M. Y. Yamamura, L. F. C. Almeida, E. Caride, R. B. Goncalves, J. L. Silva, A. C. Oliveira, R. Galler, M. S. Freire, J. Virol. Methods 2008, 150, 57– 62.
- 25 C. G. Patkar, C. T. Jones, Y. Chang, R. Warrier, R. J. Kuhn, J. Virol. 2007, 81, 6471– 6481.
- 26 Y. Zhang, J. Corver, P. R. Chipman, W. Zhang, S. V. Pletnev, D. Sedlak, T. S. Baker, J. H. Strauss, R. J. Kuhn, M. G. Rossmann, EMBO J. 2003, 22, 2604– 2613.
- 27 a) T. Sennerfors, J. C. Froberg, F. Tiberg, J. Colloid Interface Sci. 2000, 228, 127– 134; b) G. Schneider, G. Decher, Nano Lett. 2004, 4, 1833– 1839; c) G. Schneider, G. Decher, Langmuir 2008, 24, 1778– 1789.
- 28 A. Op De Beeck, R. Molenkamp, M. Caron, A. Ben Younes, P. Bredenbeek, J. Dubuisson, J. Virol. 2003, 77, 813– 820.
- 29 F. Li, Z.-P. Zhang, J. Peng, Z.-Q. Cui, D.-W. Pang, K. Li, H.-P. Wei, Y.-F. Zhou, J.-K. Wen, X.-E. Zhang, Small 2009, 5, 718– 726.
- 30 K. Joo, Y. Lei, C.-L. Lee, J. Lo, J. Xie, S. F. Hamm-Alvarez, P. Wang, ACS Nano 2008, 2, 1553– 1562.
- 31 B. Y. S. Kim, W. Jiang, J. Oreopoulos, C. M. Yip, J. T. Rutka, W. C. W. Chan, Nano Lett. 2008, 8, 3887– 3892.
- 32 a) J.-P. Y. Scheerlinck, D. L. V. Greenwood, Drug Discovery Today 2008, 13, 882– 887; b) M. Manchester, P. Singh, Adv. Drug Delivery Rev. 2006, 58, 1505– 1522.