Plasmon Coupling in Clusters Composed of Two-Dimensionally Ordered Gold Nanocubes
Huanjun Chen
Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR (P.R. China)
Search for more papers by this authorZhenhua Sun
Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR (P.R. China)
Search for more papers by this authorWeihai Ni
Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR (P.R. China)
Search for more papers by this authorKat Choi Woo
Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR (P.R. China)
Search for more papers by this authorHai-Qing Lin
Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR (P.R. China)
Search for more papers by this authorLingdong Sun
State Key Laboratory of Rare Earth Materials Chemistry and Applications Peking University Beijing 100871 (P.R. China)
Search for more papers by this authorChunhua Yan
State Key Laboratory of Rare Earth Materials Chemistry and Applications Peking University Beijing 100871 (P.R. China)
Search for more papers by this authorCorresponding Author
Jianfang Wang
Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR (P.R. China)
Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR (P.R. China).Search for more papers by this authorHuanjun Chen
Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR (P.R. China)
Search for more papers by this authorZhenhua Sun
Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR (P.R. China)
Search for more papers by this authorWeihai Ni
Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR (P.R. China)
Search for more papers by this authorKat Choi Woo
Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR (P.R. China)
Search for more papers by this authorHai-Qing Lin
Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR (P.R. China)
Search for more papers by this authorLingdong Sun
State Key Laboratory of Rare Earth Materials Chemistry and Applications Peking University Beijing 100871 (P.R. China)
Search for more papers by this authorChunhua Yan
State Key Laboratory of Rare Earth Materials Chemistry and Applications Peking University Beijing 100871 (P.R. China)
Search for more papers by this authorCorresponding Author
Jianfang Wang
Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR (P.R. China)
Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR (P.R. China).Search for more papers by this authorAbstract
Gold nanocubes are assembled into clusters of varying numbers and ordering on indium tin oxide substrates. The plasmon coupling in the clusters is studied with both dark-field imaging and finite-difference time-domain calculations. Generally, as a cluster becomes larger and more asymmetric, it exhibits more scattering peaks towards longer wavelengths. The coupling of the vertically oriented dipole in the nanocube with its image dipole in the substrate generates two scattering peaks. One is fixed in energy and the other red-shifts with increasing cluster size. The coupling of horizontally oriented dipoles among different nanocubes produces multiple scattering peaks at lower energies. Their positions and intensities are highly dependent on the number and ordering of nanocubes in the cluster. Au nanocubes in the clusters are further welded together by thermal treatment. The scattering peaks of the thermally treated clusters generally become sharper. The lower-energy scattering peaks arising from dipolar oscillations are red-shifted.
References
- 1 J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, P. Mulvaney, Coord. Chem. Rev. 2005, 249, 1870.
- 2 L. M. Liz-Marzán, Langmuir 2006, 22, 32.
- 3 K. A. Willets, R. P. Van Duyne, Annu. Rev. Phys. Chem. 2007, 58, 267.
- 4 S. K. Ghosh, T. Pal, Chem. Rev. 2007, 107, 4797.
- 5 P. K. Jain, X. H. Huang, I. H. El-Sayed, M. A. El-Sayed, Acc. Chem. Res. 2008, 41, 1578.
- 6 S. E. Skrabalak, J. Y. Chen, Y. G. Sun, X. M. Lu, L. Au, C. M. Cobley, Y. N. Xia, Acc. Chem. Res. 2008, 41, 1587.
- 7 J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Z. Li, L. K. Ausman, A. L. Atkinson, G. C. Schatz, Acc. Chem. Res. 2008, 41, 1710.
- 8 C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, P. Hankins, Chem. Commun. 2008, 544.
- 9 A. M. Schwartzberg, J. Z. Zhang, J. Phys. Chem. C 2008, 112, 10323.
- 10 A. R. Tao, S. Habas, P. D. Yang, Small 2008, 4, 310.
- 11 J. Jiang, K. Bosnick, M. Maillard, L. Brus, J. Phys. Chem. B 2003, 107, 9964.
- 12 R. F. Aroca, R. A. Alvarez-Puebla, N. Pieczonka, S. Sanchez-Cortez, J. V. Garcia-Ramos, Adv. Colloid Interface Sci. 2005, 116, 45.
- 13 M. Moskovits, J. Raman Spectrosc. 2005, 36, 485.
- 14 K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, Nano Lett. 2003, 3, 1087.
- 15 P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, Phys. Rev. Lett. 2005, 94, 017402.
- 16 P. K. Jain, W. Y. Huang, M. A. El-Sayed, Nano Lett. 2007, 7, 2080.
- 17 Z. H. Sun, W. H. Ni, Z. Yang, X. S. Kou, L. Li, J. F. Wang, Small 2008, 4, 1287.
- 18 Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, X.-W. Zou, Nano Lett. 2007, 7, 723.
- 19
T. Ming,
X. S. Kou,
H. J. Chen,
T. Wang,
H.-L. Tam,
K.-W. Cheah,
J.-Y. Chen,
J. F. Wang,
Angew. Chem.
2008,
120,
9831;
Angew. Chem. Int. Ed.
2008,
47,
9685.
10.1002/ange.200803642 Google Scholar
- 20 G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, Nano Lett. 2007, 7, 1297.
- 21 A. R. Tao, P. Sinsermsuksakul, P. D. Yang, Nat. Nanotechnol. 2007, 2, 435.
- 22 A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, P. D. Yang, Nano Lett. 2008, 8, 4033.
- 23 W. L. Barnes, A. Dereux, T. W. Ebbesen, Nature 2003, 424, 824.
- 24 E. Ozbay, Science 2006, 311, 189.
- 25 W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg, Opt. Commun. 2003, 220, 137.
- 26 D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, Nano Lett. 2004, 4, 957.
- 27 T. Atay, J.-H. Song, A. V. Nurmikko, Nano Lett. 2004, 4, 1627.
- 28 A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, Nano Lett. 2006, 6, 355.
- 29 P. K. Jain, S. Eustis, M. A. El-Sayed, J. Phys. Chem. B 2006, 110, 18243.
- 30 P. K. Jain, M. A. El-Sayed, Nano Lett. 2007, 7, 2854.
- 31 P. K. Jain, M. A. El-Sayed, J. Phys. Chem. C 2008, 112, 4954.
- 32 C. Sönnichsen, B. M. Reinhard, J. Liphardt, A. P. Alivisatos, Nat. Biotechnol. 2005, 23, 741.
- 33 B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, J. Liphardt, Nano Lett. 2005, 5, 2246.
- 34 B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, J. Liphardt, Proc. Natl. Acad. Sci. USA 2007, 104, 2667.
- 35 P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, Nano Lett. 2004, 4, 899.
- 36 I. Romero, J. Aizpurua, G. W. Bryant, F. J. García de Abajo, Opt. Express 2006, 14, 9988.
- 37 T. K. Sau, C. J. Murphy, J. Am. Chem. Soc. 2004, 126, 8648.
- 38 H. J. Chen, X. S. Kou, Z. Yang, W. H. Ni, J. F. Wang, Langmuir 2008, 24, 5233.
- 39 X. S. Kou, Z. H. Sun, Z. Yang, H. J. Chen, J. F. Wang, Langmuir 2009, 25, 1692.
- 40 Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, Z. Sun, Thin Solid Films 2006, 510, 95.
- 41 A. Kondilis, E. Aperathitis, M. Modreanu, Thin Solid Films 2008, 516, 8073.
- 42 J. J. Mock, D. R. Smith, S. Schultz, Nano Lett. 2003, 3, 485.
- 43 A. D. McFarland, R. P. Van Duyne, Nano Lett. 2003, 3, 1057.
- 44 L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, Y. N. Xia, Nano Lett. 2005, 5, 2034.
- 45 L. J. Sherry, R. C. Jin, C. A. Mirkin, G. C. Schatz, R. P. Van Duyne, Nano Lett. 2006, 6, 2060.
- 46 W. H. Ni, H. J. Chen, X. S. Kou, M. H. Yeung, J. F. Wang, J. Phys. Chem. C 2008, 112, 8105.
- 47 T. Okamato, I. Yamaguchi, J. Phys. Chem. B 2003, 107, 10321.
- 48 P. Nordlander, E. Prodan, Nano Lett. 2004, 4, 2209.
- 49 G. Lévêque, O. J. F. Martin, Opt. Express 2006, 14, 9971.
- 50 J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, D. R. Smith, Nano Lett. 2008, 8, 2245.
- 51 K. Dick, T. Dhanasekaran, Z. Y. Zhang, D. Meisel, J. Am. Chem. Soc. 2002, 124, 2312.
- 52 P. B. Johnson, R. W. Christy, Phys. Rev. B 1972, 6, 4370.