Stabilization and second-order optimization for multimodule impulsive switched linear systems
Corresponding Author
Zidong Ai
College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, China
Institute of Artificial Intelligence and Control, Qingdao University of Science and Technology, Qingdao, China
Zidong Ai, College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; or Institute of Artificial Intelligence and Control, Qingdao University of Science and Technology, Qingdao 266061, China.
Email: [email protected]
Search for more papers by this authorLianghong Peng
School of Automation, Qingdao University, Qingdao, China
Search for more papers by this authorCorresponding Author
Zidong Ai
College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, China
Institute of Artificial Intelligence and Control, Qingdao University of Science and Technology, Qingdao, China
Zidong Ai, College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; or Institute of Artificial Intelligence and Control, Qingdao University of Science and Technology, Qingdao 266061, China.
Email: [email protected]
Search for more papers by this authorLianghong Peng
School of Automation, Qingdao University, Qingdao, China
Search for more papers by this authorSummary
In this work, we investigate stabilization and optimization issues for a class of multimodule impulsive switched linear systems. First, we establish a necessary and sufficient criterion on asymptotic stabilizability via a pathwise state-feedback scheme, which achieves the merits of both time-driven and state-feedback mechanisms. Then, we present an impulse/switching instant optimization problem that usually arises in finite-horizon optimal control. To reduce the computational burden, we propose a novel method via developing efficiently computable expressions for the cost function, the gradient vector, and the Hessian matrix. Next, we design a second-order optimization algorithm searching for the optimal impulse/switching instants. Finally, a numerical example is provided to illustrate the effectiveness of the proposed approach.
REFERENCES
- 1Goebel R, Sanfelice RG, Teel AR. Hybrid Dynamical Systems: Modeling, Stability and Robustness. Princeton, NJ: Princeton University Press; 2012.
- 2Guan Z-H, Hill DJ, Shen X. On hybrid impulsive and switching systems and application to nonlinear control. IEEE Trans Autom Control. 2005; 50(7): 1058-1062.
- 3Liu J, Liu X, Xie W-C. Input-to-state stability of impulsive and switching hybrid systems with time-delay. Automatica. 2011; 47(5): 899-908.
- 4Liu B, Marquez H. Controllability and observability for a class of controlled switching impulsive systems. IEEE Trans Autom Control. 2008; 53(10): 2360-2366.
- 5Hou L, Zong G, Wu Y, et al. Exponential l2-l∞ output tracking control for discrete-time switched system with time-varying delay. Int J Robust Nonlinear Control. 2012; 22(11): 1175-1194.
- 6Lin H, Antsaklis PJ. Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Trans Autom Control. 2009; 54(2): 308-322.
- 7Zong G, Ren H, Hou L. Finite-time stability of interconnected impulsive switched systems. IET Control Theory Appl. 2016; 10(6): 648-654.
- 8Pablo S, Claude H. Observability criteria for impulsive control systems with applications to biomedical engineering processes. Automatica. 2015; 55: 125-131.
- 9Wertz J, Everett D, Puschell J. Space Mission Engineering: The New SMAD. Hawthorne, CA: Microcosm Press; 2011.
- 10Yang T. Impulsive Control Theory. Berlin, Germany: Springer; 2001.
- 11Wu A, Feng G, Duan G, et al. Stabilising slow-switching laws for switched discrete-time linear systems. IET Control Theory Appl. 2011; 5(16): 1843-1858.
- 12Xiang W, Xiao J. Stabilization of switched continuous-time systems with all modes unstable via dwell time switching. Automatica. 2014; 50(3): 940-945.
- 13Yuan C, Wu F. Almost output regulation of switched linear dynamics with switched exosignals. Int J Robust Nonlinear Control. 2017; 27(16): 3197-3217.
- 14Yuan C, Wu F. Robust h2 and h∞ switched feedforward control of uncertain LFT systems. Int J Robust Nonlinear Control. 2016; 26(9): 1841-1856.
- 15Zhao X, Yin S, Li H, et al. Switching stabilization for a class of slowly switched systems. IEEE Trans Autom Control. 2015; 60(1): 221-226.
- 16Feng G. Controller design and analysis of uncertain piecewise linear systems. IEEE Trans Circuits Syst I. 2002; 49(2): 224-232.
10.1109/81.983869 Google Scholar
- 17Yuan C, Wu F. Hybrid control for switched linear systems with average dwell time. IEEE Trans Autom Control. 2014; 60(1): 240-245.
- 18Allerhand L, Shaked U. Robust state-dependent switching of linear systems with dwell time. IEEE Trans Autom Control. 2013; 58(4): 994-1001.
- 19Sun Z. Combined stabilizing strategies for switched linear systems. IEEE Trans Autom Control. 2006; 51(4): 666-674.
- 20Sun Z. Stabilizing switching design for switched linear systems: a state-feedback pathwise switching approach. Automatica. 2009; 45(7): 1708-1714.
- 21Ai Z, Peng L. Stabilization and robustness analysis of multi-module impulsive switched linear systems. Nonlinear Anal Hybrid Syst. 2018; 30: 293-305.
- 22Sun Z, Ge S. Stability Theory of Switched Dynamical Systems. London, UK: Springer; 2011.
- 23Ji Y, Liu X, Ding F. New criteria for the robust impulsive synchronization of uncertain chaotic delayed nonlinear systems. Nonlinear Dynamics. 2015; 79(1): 1-9.
- 24Chen W-H, Lu X, Zheng W. Impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks. IEEE Trans Neural Netw Learn Syst. 2015; 26(4): 734-748.
- 25Lu J, Ho D, Cao J. A unified synchronization criterion for impulsive dynamical networks. Automatica. 2010; 46(7): 1215-1221.
- 26Yang X, Cao J, Yang Z. Synchronization of coupled reaction-diffusion neural networks with time-varying delays via pinning-impulsive controller. SIAM J Control Optim. 2013; 51(5): 3486-3510.
- 27Guan Z-H, Hu B, Chi M, He D-X, Cheng X-M. Guaranteed performance consensus in second-order multi-agent systems with hybrid impulsive control. Automatica. 2014; 50(9): 2415-2418.
- 28Ai Z. Stabilization and optimization of linear systems via pathwise state-feedback impulsive control. J Frankl Inst. 2017; 354(3): 1637-1657.
- 29Bengea S, DeCarlo R. Optimal control of switching systems. Automatica. 2005; 41(1): 11-27.
- 30Mojica-Nava E, Quijano N, Rakoto-Ravalontsalama N. A polynomial approach for optimal control of switched nonlinear systems. Int J Robust Nonlinear Control. 2014; 24(12): 1797-1808.
- 31Xu X, Antsaklis PJ. Optimal control of switched systems: new results and open problems. In: Proceedings of American Control Conference; 2000; Chicago, IL.
- 32Xu X, Antsaklis PJ. Optimal control of switched systems based on parameterization of the switching instants. IEEE Trans Autom Control. 2004; 49(1): 2-16.
- 33Giua A, Seatzu C, Mee CVD. Optimal control of switched autonomous linear systems. In: Proceedings of the IEEE Conference on Decision and Control; 2001; Orlando, FL.
- 34Caldwell TM, Murphey TD. Single integration optimization of linear time-varying switched systems. IEEE Trans Autom Control. 2012; 57(6): 1592-1597.
- 35Egerstedt M, Wardi Y, Axelsson H. Transition-time optimization for switched-mode dynamical systems. IEEE Trans Autom Control. 2006; 51(1): 110-115.
- 36Caldwell TM, Murphey TD. An ajoint method for second-order switching time optimization. In: Proceedings of the IEEE Conference on Decision and Control; 2010; Atlanta, GA.
- 37Nocedal J, Wright S. Numerical Optimization. New York, NY: Springer; 2006.
- 38Johnson ER, Murphey TD. Second-order switching time optimization for nonlinear time-varying dynamical systems. IEEE Trans Autom Control. 2011; 56(8): 1953-1957.
- 39Zhang W, Tang Y, Miao Q, Fang J-A. Synchronization of stochastic dynamical networks under impulsive control with time delays. IEEE Trans Neural Netw Learn Syst. 2014; 25(10): 1758-1768.
- 40Dai X, Huang Y, Xiao M. Periodically switched stability induces exponential stability of discrete-time linear switched systems in the sense of Markovian probabilities. Automatica. 2011; 47(7): 1512-1519.
- 41Lee D, Hu J. Periodic stabilization of discrete-time switched linear systems. IEEE Trans Autom Control. 2017; 62(7): 3382-3394.
- 42Li P, Lam J, Kwok K-W, Lu R. Stabilization of periodic piecewise linear systems stability: a matrix polynomial approach. Automatica. 2018; 94: 1-8.
- 43Zhang W, Abate A, Hu J, Vitus M. Exponential stabilization of discrete-time switched linear systems. Automatica. 2009; 45(11): 2526-2536.
- 44Van Loan C. Computing integrals involving the matrix exponential. IEEE Trans Autom Control. 1978; 23(3): 395-404.
- 45Ortega J, Rheinboldt W. Iterative Solution of Nonlinear Equations in Several Variables. New York, NY:Academic Press; 1970.