Volume 106, Issue 13 pp. 2706-2713

Theoretical and experimental study of aparisthman: A natural product with anti-ulcer activity

D. S. B. Brasil

D. S. B. Brasil

Departamento de Química, Centro de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110 Belém, PA, Brasil

Search for more papers by this author
R. Y. O. Moreira

R. Y. O. Moreira

Departamento de Química, Centro de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110 Belém, PA, Brasil

Search for more papers by this author
A. H. Müller

A. H. Müller

Departamento de Química, Centro de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110 Belém, PA, Brasil

Search for more papers by this author
C. N. Alves

Corresponding Author

C. N. Alves

Departamento de Química, Centro de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110 Belém, PA, Brasil

Departamento de Química, Centro de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110 Belém, PA, BrasilSearch for more papers by this author
First published: 23 June 2006
Citations: 8

Abstract

Aparisthman is a furan diterpenoid with a clerodane skeleton isolated from Aparisthmium cordatum (Juss.) Bail. (Euphorbiaceae). This natural product presents significant anti-ulcer activity to the level of cimetidine (Tagamet®), a compound used for the treatment of ulcers provoked by stress. The structure of X-ray diffraction of the aparisthman was compared with theoretical calculations and the results showed that the theory is in accordance with the experimental data. The infrared (IR) and nuclear magnetic resonance (NMR) spectra also were obtained and compared with theoretical calculations. The B3LYP theory level, with the 6-31G(d,p) basis set, leads the value to the IR absorption close to the value experimentally observed. NMR theoretical obtained with HF/6-311+G(2d,p) shows little deviation of experimental results. Calculations of molecular electrostatic potential and stabilization energies suggest that the protonation of aparisthman will be able to occur on carbonyl oxygen atom (O4). © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.