Conventional strain energy in the oxadiazetidines
Christopher W. Benton
Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi 39058, USA
Search for more papers by this authorCorresponding Author
David H. Magers
Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi 39058, USA
Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi 39058, USASearch for more papers by this authorChristopher W. Benton
Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi 39058, USA
Search for more papers by this authorCorresponding Author
David H. Magers
Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi 39058, USA
Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi 39058, USASearch for more papers by this authorAbstract
The conventional strain energies for all four isomers of oxadiazetidine are determined within the isodesmic, homodesmotic, and hyperhomodesmotic models. Optimum equilibrium geometries, harmonic vibrational frequencies, and corresponding electronic energies are computed for all pertinent molecular systems using self-consistent field theory, second-order perturbation theory, and density functional theory (DFT) and employing two basis sets of triple-zeta valence quality: 6-311G(d,p) and 6-311+G(2df,2pd). The DFT functional employed is Becke's three-parameter hybrid functional using the Lee, Yang, and Paar correlation functional. Single-point fourth-order perturbation theory and coupled-cluster theory restricted to single and double excitations [CCSD(T)] calculations employing the larger basis set also are computed, at both the second-order Møller–Plesset (MP2)/6-311G(d,p) and the MP2/6-311+G(2df,2pd) optimized geometries, to determine the effect of higher-order correlation effects on strain energy computation and to gauge the effect of geometry on these effects. Using the same models and methods, the conventional strain energies for both isomers of oxazetidine also are computed, to determine the effect on the strain energy of replacing a nitrogen with a carbon in the ring. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004
REFERENCES
- 1
Cox, J. D.;
Pilcher, G.
Thermochemistry of Organic and Organometallic Compounds;
Academic Press:
London,
1970.
10.1002/9783527619825 Google Scholar
- 2 Schleyer, P. v. R.; Williams, J. E.; Blanchard, K. R. J Am Chem Soc 1970, 92, 2377.
- 3 Hoffmann, R. Tetrahedron Lett 1970, 2907.
- 4 Hoffmann, R.; Stohrer, W.-D. J Am Chem Soc 1971, 93, 6941.
- 5 Radom, L.; Pople, J. A.; Schleyer, P. v. R. J Am Chem Soc 1972, 94, 5935.
- 6 Benson, S. W. Thermochemical Kinetics; John Wiley & Sons, Inc.: New York, 1976.
- 7 Deakyne, C. A.; Allen, L. C.; Laurie, V. W. J Am Chem Soc 1977, 99, 1343.
- 8 Greenberg, A.; Liebman, J. Strained Organic Molecules; Academic Press: New York, 1978.
- 9 Durmaz, S.; Kollmar, H. J Am Chem Soc 1980, 102, 6942.
- 10 Cremer, D.; Kraka, E. J Am Chem Soc 1985, 107, 3800.
- 11 Cremer, D.; Kraka, E. J Am Chem Soc 1985, 107, 3811.
- 12 Cremer, D.; Gauss, J. J Am Chem Soc 1986, 108, 7467.
- 13 Cremer, D.; Kraka, E. In Structure and Reactivity; J. F. Liebman; A. Greenberg, Eds.; VCH Publishers: New York, 1988; p 65.
- 14 Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic Chemistry; John Wiley & Sons: New York, 1994, p 676–677.
- 15
Baeyer, A.
Ber Dtsch Chem Ges
1885, 18,
2269.
10.1002/cber.18850180296 Google Scholar
- 16 Westheimer, F. H. In Steric Effects in Organic Chemistry; M. S. Newman, Ed.; John Wiley & Sons, Inc: New York, 1956; p 523.
- 17 Pitzer, K. S. J Chem Phys 1937, 5, 469.
- 18 Pitzer, K. S. Science 1945, 101, 672.
- 19 Dunitz, J. D.; Schomaker, V. J Chem Phys 1952, 20, 1703.
- 20 Brown, H. C. Rec Chem Prog 1953, 14, 83.
- 21 Brown, H. C. J Chem Soc 1956, 1248.
- 22 Dewar, M. J. S. J Am Chem Soc 1984, 106, 669.
- 23 Dill, J. D.; Greenberg, A.; Liebman, J. F. J Am Chem Soc 1979, 101, 6814.
- 24 Wiberg, K. B.; Bader, R. F. W.; Lau, C. D. H. J Am Chem Soc 1987, 109, 1001.
- 25 Davis, S. R.; Tan, P. L. J Phys Chem 1994, 98, 12236.
- 26 Walker, J. E.; Adamson, P. A.; Davis, S. R. J Mol Struct (Theochem) 1999, 487, 145.
- 27 Schoeller, W. W.; Staemmler, V.; Rademacher, P.; Niecke, E. Inorg Chem 1986, 25, 4382.
- 28 Zhao, M.; Gimarc, B. M. J Phys Chem 1993, 97, 4023.
- 29 Warren, D. S.; Gimarc, B. M. J Phys Chem 1993, 97, 4031.
- 30 Gimarc, B. M.; Zhao, M. J Phys Chem 1994, 98, 1596.
- 31 Zhao, M.; Gimarc, B. M. J Phys Chem 1994, 98, 7497.
- 32 Zhao, M.; Gimarc, B. M. Inorg Chem 1996, 35, 5378.
- 33 Gordon, M. S. J Am Chem Soc 1980, 102, 7419.
- 34 Bachrach, S. M. J Phys Chem 1989, 93, 7780.
- 35 Bachrach, S. M. J Phys Chem 1993, 97, 4996.
- 36 Alcamí, M.; Mó, O.; Yáñez, M. J Comput Chem 1998, 19, 1072.
- 37 Magers, D. H.; Davis, S. R. J Mol Struct (Theochem) 1999, 487, 205.
- 38 Lewis, L. L.; Turner, L. L.; Salter, E. A.; Magers, D. H. J Mol Struct (Theochem) 2002, 592, 161.
- 39 Muller, L. L.; Hamer, J. 1,2-Cycloaddition Reactions; Interscience: New York, 1967; p 301–304.
- 40 Layer, R. W. Chem Rev 1963, 63, 489.
- 41 Taylor, E. C.; Furth, B.; Pfau, M. J Am Chem Soc 1965, 87, 1400.
- 42 Taylor, E. C.; Buntrock, R. E. J Org Chem 1971, 36, 634.
- 43 Ingold, C. K. J Chem Soc 1924, 125, 87.
- 44 Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; John Wiley: New York, 1986, p 298.
- 45 George, P.; Trachtman, M.; Bock, C. W.; Brett, A. M. Tetrahedron 1976, 32, 317.
- 46 Hess, B. A.; Schaad, L. J. J Am Chem Soc 1983, 105, 7500.
- 47 Blahous, C. P., III; Schaefer, H. F., III. J Phys Chem 1988, 92, 959.
- 48 Møller, C.; Plesset, M. S. Phys Rev 1934, 46, 618.
- 49 Hohenberg, P.; Kohn, W. Phys Rev B 1964, 136, 864.
- 50 Kohn, W.; Sham, L. J. Phys Rev A 1965, 140, 1133.
- 51 Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, 1989.
- 52 Becke, A. D. J Chem Phys 1993, 98, 5648.
- 53 Lee, C.; Yang, W.; Parr, R. G. Phys Rev B 1988, 37, 785.
- 54 Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem Phys Lett 1989, 157, 200.
- 55 McLean, A. D.; Chandler, G. S. J Chem Phys 1980, 72, 5639.
- 56 Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R. J Comput Chem 1983, 4, 294.
- 57 Frisch, M. J.; Pople, J. A.; Binkley, J. S. J Chem Phys 1984, 80, 3265.
- 58 Krishnan, R.; Pople, J. A. Int J Quantum Chem 1978, 14, 91.
- 59 Bartlett, R. J.; Purvis, G. D. Int J Quantum Chem 1978, 14, 561.
- 60 Cizek, J. Adv Chem Phys 1969, 14, 35.
- 61 Purvis, G. D.; Bartlett, R. J. J Chem Phys 1982, 76, 1910.
- 62 Urban, M.; Noga, J.; Cole, S.; Bartlett, R. J. J Chem Phys 1985, 83, 4041.
- 63 Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J Chem Phys 1987, 87, 5968.
- 64 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.; Gaussian #98, Revision A.7; Gaussian: Pittsburgh, 1998.