Self-assembly structure of the levulinic acid–melamine lattice
Ramaiyer Venkatraman
Department of Chemistry, Jackson State University, Jackson, MS
Search for more papers by this authorCorresponding Author
Paresh Chandra Ray
Department of Chemistry, Jackson State University, Jackson, MS
Department of Chemistry, Jackson State University, Jackson, MSSearch for more papers by this authorChan Soo Choi
Division of Hi-Tech Materials Science, Daejeon University, Daejeon, Korea
Search for more papers by this authorRamaiyer Venkatraman
Department of Chemistry, Jackson State University, Jackson, MS
Search for more papers by this authorCorresponding Author
Paresh Chandra Ray
Department of Chemistry, Jackson State University, Jackson, MS
Department of Chemistry, Jackson State University, Jackson, MSSearch for more papers by this authorChan Soo Choi
Division of Hi-Tech Materials Science, Daejeon University, Daejeon, Korea
Search for more papers by this authorAbstract
Equimolar amounts of levulinic acid and melamine formed a self-assembled unit through a hydrogen-bonding network. Room-temperature single-crystal diffraction studies and FTIR spectroscopy of the system indicated adduct formation between melamine and levulinic acid. Ab initio Hartree–Fock (HF) and density functional theory (DFT) calculations, using the 6-31G(d,p) basis set, have been performed to investigate the gas-phase structure and IR frequencies. The theoretical parameters (geometry and vibrational frequencies) predicted by HF and DFT methods for the adduct are in good agreement with the experimental data. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004
REFERENCES
- 1
Lehn, J. M.
Supramolecular Chemistry Concepts and Prospectives;
VCH:
New York,
1995.
10.1002/3527607439 Google Scholar
- 2
Desiraju, G. R.
The Crystal as a Supramolecular Entity;
Wiley:
New York,
1996.
10.1002/9780470511459 Google Scholar
- 3 Andres, R. P.; Bielefeld, J. D.; Henderson, J. L.; Janes, D. B.; Kolagunta, V. R.; Kubiak, C. P. Science 1996, 273, 1690.
- 4 Maoz, R.; Matlis, S.; Dimasi, E.; Ocko, B. M.; Sagiv, J. Nature 1996, 384, 150.
- 5 Philip, D.; Stoddart, J. F. Angew Chem Int Ed Engl 1996, 35, 1154.
- 6 Stryer, L. Biochemistry, 4th ed.; W. H. Freeman: New York, 1995.
- 7 Whitesides, G. M.; Mathias, P.; Seto, C. T. Science 1991, 254, 1312.
- 8
Batten, S. R.;
Robson, R.
Angew. Chem Int Ed
1998, 37,
1460.
10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- 9 Reinhoudt, D. N.; Stoddart, J. F.; Ungaro, R. Chem Eur J 1998, 4, 1349.
- 10 Vogtle, F. Supramolecular Chemistry; Wiley: New York, 1991.
- 11 Rebek, J. Angew Chem Int Ed Engl 1990, 29, 245.
- 12 Amabilino, D. B.; Stoddart, J. F. Chem Rev 1995, 95, 2715.
- 13 Ranganathan, A.; Pedireddi, V. R.; Rao, C. N. R. J Am Chem Soc 1999, 121, 1752.
- 14 Harada A.; Li, J.; Kamachi, M. Nature 1992, 356, 325.
- 15 Harada A.; Li, J.; Kamachi, M. Nature 1994, 370, 126.
- 16 Wang, Y.; Wei, B.; Wang, Q. J Crystallogr Spectrosc Res 1990, 20, 79.
- 17 Steo, C. T.; Whitesides, G. M. J Am Chem Soc 1993, 115, 905.
- 18 Mammen, M.; Simanek, E. E.; Whitesides, G. M. J Am Chem Soc 1996, 118, 12614.
- 19 Mammen, M.; Simanek, E. E.; Whitesides, G. M. J Am Chem Soc 1994, 116, 1725.
- 20 Shiki, Y.; Kitamura, T. Chem Com 2003, 15, 1844.
- 21 Mammen, M.; Shaknovich, E. I.; Deutch, J. M.; Whitesides, G. M. J Org Chem 1998, 63, 3821.
- 22 Venkatraman, R.; Choi, C. S.; Kang, S. K.; Hwang, H. S.; Kim, E. H. Acta Cryst 2004, C60, o295.
- 23 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Pittsburgh, PA, 2003.
- 24 Yang, Y.; Pittman, C. U.; Saebo, S. J Org Chem 1993, 58, 3085.
- 25 NIST Chemistry Web Book; http://www.nist.gov.
- 26 Scoponi, M.; Polo, E.; Paradella, F.; Bertolasi, V.; Goberti, P. J Chem Soc Perkin Trans 1992, 2, 1127.
- 27 Wang, Y-L.; Mebel, A. M.; Wu, C-J.; Chen, Y-T; Lin, C-E.; Jiang, J-C. J Chem Soc Faraday Trans 1997, 93, 3445.
- 28 Hehre, W.; Radom, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.
- 29 Rauhut, G.; Pulay, P. J. J Phys Chem 1995, 99, 3093.