Auxeticity and Its Pressure Dependence for Strongly Anisotropic Hard Cyclic Tetramers
Corresponding Author
Konstantin V. Tretiakov
Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17/19, 60-179 Poznań, Poland
Search for more papers by this authorKrzysztof W. Wojciechowski
Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17/19, 60-179 Poznań, Poland
Calisia University – Kalisz, ul. Nowy Świat 4, 62-800 Kalisz, Poland
Search for more papers by this authorCorresponding Author
Konstantin V. Tretiakov
Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17/19, 60-179 Poznań, Poland
Search for more papers by this authorKrzysztof W. Wojciechowski
Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17/19, 60-179 Poznań, Poland
Calisia University – Kalisz, ul. Nowy Świat 4, 62-800 Kalisz, Poland
Search for more papers by this authorAbstract
Elastic properties of strongly anisotropic hard cyclic tetramers are studied in the isobaric–isothermal ensemble using Monte Carlo simulations. The tetramers are model molecules consisting of four hard disks of diameter σ with centers forming a square of side d. Recently, it was shown that 2D crystals of hard cyclic tetramers (with anisotropy parameter ) can form a chiral phase, which is (completely) auxetic, that is, its Poisson's ratio is negative in all directions. Herein, the complete pressure dependence of the Poisson's ratio of the tetramer crystalline phase is presented. These studies show that the auxetic properties occur over a wide pressure range, but the tetramer system is only partially auxetic at low pressures. The Poisson's ratio of the system varies with pressure between and 0.500(3).
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1 P. Samori, X. Feng, V. Palermo, Nanoscale 2020, 12, 24309.
- 2 Y. H. Wei, R. Klajn, A. O. Pinchuk, B. A. Grzybowski, Small 2008, 4, 1635.
- 3 M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, C. A. Mirkin, Chem. Rev. 2011, 111, 3736.
- 4 C. Yan, T. Wang, Chem. Soc. Rev. 2017, 46, 1483.
- 5 R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, F. Zamora, Nanoscale 2011, 3, 20.
- 6 S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, J. E. Goldberger, ACS Nano 2013, 7, 2898.
- 7 J. N. Grima, S. Winczewski, L. Mizzi, M. C. Grech, R. Cauchi, R. Gatt, D. Attard, K. W. Wojciechowski, J. Rybicki, Adv. Mat. 2015, 27, 1455.
- 8 Y. Suzuki, G. Cardone, D. Restrepo, P. D. Zavattieri, T. S. Baker, F. A. Tezcan, Nature 2016, 533, 369.
- 9 K. E. Evans, Endeavour 1991, 15, 170.
- 10 R. H. Baughman, J. M. Shacklette, A. A. Zakhidov, S. Stafstrom, Nature 1998, 392, 362.
- 11 K. E. Evans, A. Alderson, Adv. Mater. 2000, 12, 617.
- 12 R. H. Baughman, S. O. Dantas, S. Stafstrom, A. A. Zakhidov, T. B. Mitchell, D. H. E. Dubin, Science 2000, 288, 2018.
- 13 R. H. Baughman, Nature 2003, 425, 667.
- 14 L. D. Landau, E. M. Lifshits, A. M. Kosevich, I. P. Pitaevskii, Theory of Elasticity, Pergamon Press, London 1986.
- 15 R. F. Almgren, J. Elasticity 1985, 15, 427.
- 16 A. G. Kolpakov, Prikl. Matem. Mekham. 1985, 49, 969.
- 17 R. Lakes, Science 1987, 235, 1038.
- 18 K. W. Wojciechowski, Mol. Phys. 1987, 61, 1247.
- 19 K. W. Wojciechowski, Phys. Lett. A 1989, 137, 60.
- 20 K. E. Evans, B. D. Caddock, J. Phys. D: Appl. Phys. 1989, 22, 1883.
- 21 G. W. Milton, J. Mech. Phys. Solids 1992, 40, 1105.
- 22 O. Sigmund, Int. J. Solids Struct. 1994, 31, 2313.
- 23
T. C. Lim, Auxetic Materials and Structures, Springer-Verlag, Berlin 2015.
10.1007/978-981-287-275-3 Google Scholar
- 24 R. S. Lakes, Ann. Rev. Mater. Res. 2017, 47, 63.
- 25
R. S. Lakes, Composites and Metamaterials, World Scientific, Singapore 2020.
10.1142/11715 Google Scholar
- 26
T. C. Lim, Mechanics of Metamaterials with Negative Parameters, Springer, Singapore 2020.
10.1007/978-981-15-6446-8 Google Scholar
- 27 H. Hu, M. Zhang, Y. Liu, Auxetic Textiles, Elsevier; Woodhead Publishing, Cambridge 2019.
- 28 W. G. Hoover, C. G. Hoover, Phys. Status Solidi B 2005, 242, 585.
- 29 G. N. Greaves, A. L. Greer, R. S. Lakes, T. Rouxel, Nat. Mater. 2011, 10, 823.
- 30 J. N. Grima, R. Caruana-Gauci, Nat. Mater. 2012, 11, 565.
- 31 T. C. Lim, Phys. Status Solidi B 2012, 249, 1366.
- 32 M. Kadic, T. Bueckmann, R. Schittny, M. Wegener, Rep. Prog. Phys. 2013, 76, 126501.
- 33 S. Krödel, T. Delpero, A. Bergamini, P. Ermanni, D. M. Kochmann, Adv. Eng. Mater. 2014, 16, 357.
- 34 R. Gatt, L. Mizzi, J. I. Azzopardi, K. M. Azzopardi, D. Attard, A. Casha, J. Briffa, J. N. Grima, Sci. Rep. 2015, 5, 8395.
- 35 F. Nazare, A. Alderson, Phys. Status Solidi B 2015, 252, 1465.
- 36 R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko, Phys. Status Solidi B. 2016, 253, 1261.
- 37 A. Rafsanjani, K. Bertoldi, Phys. Rev. Lett. 2017, 118, 084301.
- 38
D. T. Ho, C. T. Nguyen, S. Y. Kwon, S. Y. Kim, Phys. Status Solidi B 2019, 256, 1800122.
10.1002/pssb.201800122 Google Scholar
- 39 S. Czarnecki, T. Lukasiak, Phys. Status Solidi B 2020, 257, 1900676.
- 40 P. Pieranski, Am. J. Phys. 1984, 52, 68.
- 41 A. C. Brańka, K. W. Wojciechowski, Phys. Rev. Lett. 1983, 50, 846.
- 42 K. V. Tretiakov, J. Non-Cryst. Solids 2009, 355, 1435.
- 43 K. V. Tretiakov, K. W. Wojciechowski, Phys. Status Solidi RRL 2020, 14, 2000198.
- 44 T. C. T. Ting, D. M. Barnett, J. Appl. Mech. 2005, 72, 929.
- 45 A. C. Brańka, D. M. Heyes, K. W. Wojciechowski, Phys. Status Solidi B 2009, 246, 2063.
- 46 K. W. Wojciechowski, K. V. Tretiakov, M. Kowalik, Phys. Rev. E 2003, 67, 036121.
- 47 M. Parrinello, A. Rahman, J. Chem. Phys. 1982, 76, 2662.
- 48 J. R. Ray, A. Rahman, J. Chem. Phys. 1984, 80, 4423.
- 49 J. R. Ray, A. Rahman, J. Chem. Phys. 1985, 82, 4243.
- 50 J. F. Nye, Physical Properties of Crystalls, their Representation by Tensors and Matrices, Clarendon Press, Oxford 1957.
- 51 M. Bilski, K. W. Wojciechowski, Phys. Stat. Solidi B 2016, 253, 1318.
- 52 F. H. Stillinger, E. A. DiMarzio, R. L. Kornegay, J. Chem. Phys. 1964, 40, 1564.
- 53 F. H. Stillinger, Z. W. Salsburg, J. Chem. Phys. 1967, 46, 3962.