Self-Trapped Exciton States in Metal Halide Perovskites van der Waals Heterostructures
Xu-Fei Ma
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorJia-Pei Deng
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorHong-Tao Yang
College of Physics and Electronic Information Engineering, Jining Normal University, Ulanqab, 012000 China
Search for more papers by this authorYu Cui
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorXiao-Yi Liu
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorYi-Yan Liu
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorCorresponding Author
Xin-Jun Ma
Research Team of Extreme Condition Physics, College of Mathematics and Physics, Inner Mongolia Minzu University, Tongliao, 028043 China
Search for more papers by this authorZhi-Qing Li
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorCorresponding Author
Zi-Wu Wang
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorXu-Fei Ma
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorJia-Pei Deng
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorHong-Tao Yang
College of Physics and Electronic Information Engineering, Jining Normal University, Ulanqab, 012000 China
Search for more papers by this authorYu Cui
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorXiao-Yi Liu
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorYi-Yan Liu
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorCorresponding Author
Xin-Jun Ma
Research Team of Extreme Condition Physics, College of Mathematics and Physics, Inner Mongolia Minzu University, Tongliao, 028043 China
Search for more papers by this authorZhi-Qing Li
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorCorresponding Author
Zi-Wu Wang
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorAbstract
Self-trapped excitons (STEs), proved to be the major source of white-light emission in 2D metal halide perovskites (MHPs) van der Waals (vdW) heterostructures, have aroused intense interest in photovoltaic and photoelectric applications. Nevertheless, the intrinsic mechanisms of STEs in these vdW heterostructures are still ambiguous. Herein, the binding energy correction of a STE stemming from the exciton–phonon coupling in MHPs vdW heterostructures based on the Pollmann–Büttner model is studied. It is found that there are two types of STEs with and . The corresponding nuclear coordinate diagrams are given to explain the differences between them and why the STEs with are hard to be observed in experiments. The phase transition between two types of STEs can be achieved by regulating the structural parameters, such as the vertical distance between the encapsulation layers, the position of the monolayer MHP in the heterostructure as well as replacing the encapsulation materials. The theoretical results provide important insights into the analysis and modulation of STEs in 2D vdW heterostructures.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
pssr202200261-sup-0001-SuppData-S1.pdf601.3 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. C. Neto, Science 2016, 353, aac9439.
- 2 W.-J. Zhang, Q.-X. Wang, Y. Chen, Z. Wang, A. T. S. Wee, 2D Mater. 2016, 3, 022001.
- 3 D. L. Duong, S. J. Yun, Y. H. Lee, ACS Nano 2017, 11, 11803.
- 4 A. Yang, J.-C. Blancon, W. Jiang, H. Zhang, J. Wong, E. Yan, Y.-R. Lin, J. Crochet, M. G. Kanatzidis, D. Jariwala, T. Low, A. D. Mohite, H. A. Atwater, Nano Lett. 2019, 19, 4852.
- 5 M. Yankowitz, Q. Ma, P. Jarillo-Herrero, B. J. LeRoy, Nat. Rev. Phys. 2019, 1, 112.
- 6 B. Saparov, D. B. Mitzi, Chem. Rev. 2016, 116, 4558.
- 7 L.-L. Mao, C. C. Stoumpos, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 1171.
- 8 Y.-P. Fu, H.-M. Zhu, J. Chen, M. P. Hautzinger, X.-Y. Zhu, S. Jin, Nat. Rev. Mater. 2019, 4, 169.
- 9 C. Katan, N. Mercier, J. Even, Chem. Rev. 2019, 119, 3140.
- 10 M. D. Smith, B. A. Connor, H. I. Karunadasa, Chem. Rev. 2019, 119, 3104.
- 11 H.-P. Wang, S.-Y. Li, X.-Y. Liu, Z.-F. Shi, X.-S. Fang, J.-H. He, Adv. Mater. 2020, 33, 2003309.
- 12 E. R. Dohner, A. Jaffe, L. R. Bradshaw, H. I. Karunadasa, J. Am. Chem. Soc. 2014, 136, 13154.
- 13 M. D. Smith, H. I. Karunadasa, Acc. Chem. Res. 2018, 51, 619.
- 14 D. Cortecchia, J. Yin, A. Petrozza, C. Soci, J. Mater. Chem. C 2019, 7, 4956.
- 15 S.-R. Li, J.-J. Luo, J. Liu, J. Tang, J. Phys. Chem. Lett. 2019, 10, 1999.
- 16 S. Tomimoto, H. Nansei, S. Saito, T. Suemoto, J. Takeda, S. Kurita, Phys. Rev. Lett. 1998, 81, 417.
- 17 V. V. Kabanov, O. Y. Mashtakov, Phys. Rev. B 1993, 47, 6060.
- 18 Y. Wada, U. Lemmer, E. O. Göbel, M. Yamashita, K. Toriumi, Phys. Rev. B 1995, 52, 8276.
- 19 T. Suemoto, S. Tomimoto, J. Lumin. 1999, 83, 13.
- 20 E. R. Dohner, E. T. Hoke, H. I. Karunadasa, J. Am. Chem. Soc. 2014, 136, 1718.
- 21 T. Hu, M. D. Smith, E. R. Dohner, M.-J. Sher, X.-X. Wu, M. T. Trinh, A. Fisher, J. Corbett, X.-Y. Zhu, H. I. Karunadasa, A. M. Lindenberg, J. Phys. Chem. Lett. 2016, 7, 2258.
- 22 M.-Y. Cong, B. Yang, F. Hong, T.-C. Zheng, Y.-B. Sang, J.-W. Guo, S.-Q. Yang, K. Han, Sci. Bull. 2020, 65, 1078.
- 23 B. Yang, K. Han, J. Phys. Chem. Lett. 2021, 12, 8256.
- 24 B. Yang, J.-S. Chen, F. Hong, X. Mao, K.-B. Zheng, S.-Q. Yang, Y.-J. Li, T. Pullerits, W.-Q. Deng, K. Han, Angew. Chem., Int. Ed. 2017, 56, 12471.
- 25 B. Yang, F. Hong, J.-S. Chen, Y.-X. Tang, L. Yang, Y.-B. Sang, X.-S. Xia, J.-W. Guo, H. X. He, S.-Q. Yang, W.-Q. Deng, K. Han, Angew. Chem. 2019, 131, 2300.
- 26 Y.-W. Zhang, Y.-L. Fu, F.-W. Tang, X.-P. Zhang, J. Phys. Chem. Lett. 2021, 12, 4509.
- 27 X.-M. Wang, W.-W. Meng, W.-Q. Liao, J.-B. Wang, R.-G. Xiong, Y.-F. Yan, J. Phys. Chem. Lett. 2019, 10, 501.
- 28 Z.-W. Xu, X.-X. Jiang, H.-P. Cai, K.-Q. Chen, X.-L. Yao, Y.-X. Feng, J. Phys. Chem. Lett. 2021, 12, 10472.
- 29 S. Wang, M. Matsuura, Phys. Rev. B 1974, 10, 3330.
- 30 J. Pollmann, H. Büttner, Phys. Rev. B 1977, 16, 4480.
- 31 E. O. Kane, Phys. Rev. B 1978, 18, 6849.
- 32 S. V. Nair, J. Usukura, E. Tokunaga, Phys. Rev. B 2020, 102, 075202.
- 33 J. J. Licari, R. Evrard, Phys. Rev. B 1977, 15, 2254.
- 34 N. Mori, T. Ando, Phys. Rev. B 1989, 40, 6175.
- 35
M. A. Stroscio, M. Dutta, Phonons in Nanostructures, Cambridge University Press, Cambridge 2001.
10.1017/CBO9780511534898 Google Scholar
- 36 J.-P. Deng, H.-J. Li, X.-F. Ma, X.-Y. Liu, Y. Cui, X.-J. Ma, Z.-Q. Li, Z.-W. Wang, J. Phys. Chem. Lett. 2022, 13, 3732.
- 37 J. Pollmann, H. Büttner, Solid State Commun. 1975, 17, 1171.
- 38 R. T. Senger, K. K. Bajaj, Phys. Rev. B 2003, 68, 045313.
- 39 R. T. Senger, K. K. Bajaj, Phys. Rev. B 2003, 68, 205314.
- 40 M. V. Fischetti, D. A. Neumayer, E. A. Cartier, J. Appl. Phys. 2001, 90, 4587.
- 41 A. Konar, T. Fang, D. Jena, Phys. Rev. B 2010, 82, 115452.
- 42 I.-T. Lin, J.-M. Liu, Appl. Phys. Lett. 2013, 103, 081606.
- 43 R. H. Lyddane, R. G. Sachs, E. Teller, Phys. Rev. 1941, 59, 673.
- 44 N. Ashkenov, B. N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D. Spemann, E. M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, J. Appl. Phys. 2003, 93, 126.
- 45 M. Baranowski, P. Plochocka, Adv. Energy Mater. 2020, 10, 1903659.
- 46 M. Sendner, P. K. Nayak, D. A. Egger, S. Beck, C. Müller, B. Epding, W. Kowalsky, L. Kronik, H. J. Snaith, A. Pucci, R. Lovrinčić, Mater. Horiz. 2016, 3, 613.
- 47 J.-Y. Liu, Y.-Z. Xue, Z.-Y. Wang, Z.-Q. Xu, C.-X. Zheng, B. Weber, J.-C. Song, Y.-S. Wang, Y.-R. Lu, Y.-P. Zhang, Q.-L. Bao, ACS Nano 2016, 10, 3536.
- 48 S.-W. Gu, M.-Y. Shen, Phys. Rev. B 1987, 35, 9817.
- 49 B.-H. Wei, X.-J. Zhao, S.-W. Gu, Phys. Rev. B 1990, 41, 1368.
- 50 B.-H. Wei, S.-W. Gu, Phys. Rev. B 1991, 43, 9190.